scholarly journals QUANTUM MECHANICS AS A GAUGE THEORY OF METAPLECTIC SPINOR FIELDS

1998 ◽  
Vol 13 (22) ◽  
pp. 3835-3883 ◽  
Author(s):  
M. REUTER

A hidden gauge theory structure of quantum mechanics which is invisible in its conventional formulation is uncovered. Quantum mechanics is shown to be equivalent to a certain Yang–Mills theory with an infinite-dimensional gauge group and a nondynamical connection. It is defined over an arbitrary symplectic manifold which constitutes the phase space of the system under consideration. The "matter fields" are local generalizations of states and observables; they assume values in a family of local Hilbert spaces (and their tensor products) which are attached to the points of phase space. Under local frame rotations they transform in the spinor representation of the metaplectic group Mp(2N), the double covering of Sp(2N). The rules of canonical quantization are replaced by two independent postulates with a simple group-theoretical and differential-geometrical interpretation. A novel background-quantum split symmetry plays a central role.

2007 ◽  
Vol 22 (28) ◽  
pp. 5155-5172 ◽  
Author(s):  
R. B. MANN ◽  
E. M. POPESCU

Non-Abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher-dimensional (two-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-Abelian generalizations of the Yang–Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in 2+1 dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields — the ΣΦEA model — can be formulated as a higher gauge theory (as well as a standard gauge theory). Since the model has a very rich structure — it admits as solutions black-hole BTZ-like geometries, particle-like geometries as well as Robertson–Friedman–Walker cosmological-like expanding geometries — this opens a wide perspective for higher gauge theory to be tested and understood in a relevant gravitational context. Additionally, it offers the possibility of studying gravity in 2+1 dimensions coupled to matter in an entirely new framework.


2007 ◽  
Vol 05 (02) ◽  
pp. 123-136 ◽  
Author(s):  
CLAUDE VALLÉE ◽  
VICENŢIU RĂDULESCU

We extend to infinite dimensional separable Hilbert spaces the Schur convexity property of eigenvalues of a symmetric matrix with real entries. Our framework includes both the case of linear, selfadjoint, compact operators, and that of linear selfadjoint operators that can be approximated by operators of finite rank and having a countable family of eigenvalues. The abstract results of the present paper are illustrated by several examples from mechanics or quantum mechanics, including the Sturm–Liouville problem, the Schrödinger equation, and the harmonic oscillator.


2009 ◽  
Vol 06 (01) ◽  
pp. 129-172 ◽  
Author(s):  
JESÚS CLEMENTE-GALLARDO ◽  
GIUSEPPE MARMO

We briefly review the most relevant aspects of complete integrability for classical systems and identify those aspects which should be present in a definition of quantum integrability. We show that a naive extension of classical concepts to the quantum framework would not work because all infinite dimensional Hilbert spaces are unitarilly isomorphic and, as a consequence, it would not be easy to define degrees of freedom. We argue that a geometrical formulation of quantum mechanics might provide a way out.


2003 ◽  
Vol 18 (17) ◽  
pp. 3057-3088 ◽  
Author(s):  
I. L. Buchbinder ◽  
V. A. Krykhtin

We study the theory of noncommutative U (N) Yang–Mills field interacting with scalar and spinor fields in the fundamental and the adjoint representations. We include in the action both the terms describing interaction between the gauge and the matter fields and the terms which describe interaction among the matter fields only. Some of these interaction terms have not been considered previously in the context of noncommutative field theory. We find all counterterms for the theory to be finite in the one-loop approximation. It is shown that these counterterms allow to absorb all the divergencies by renormalization of the fields and the coupling constants, so the theory turns out to be multiplicatively renormalizable. In case of 1PI gauge field functions the result may easily be generalized on an arbitrary number of the matter fields. To generalize the results for the other 1PI functions it is necessary for the matter coupling constants to be adapted in the proper way. In some simple cases this generalization for a part of these 1PI functions is considered.


1995 ◽  
Vol 10 (01) ◽  
pp. 65-88 ◽  
Author(s):  
M. REUTER

We investigate spinor fields on phase spaces. Under local frame rotations they transform according to the (infinite-dimensional, unitary) metaplectic representation of Sp(2N), which plays a role analogous to the Lorentz group. We introduce a one-dimensional nonlinear sigma model whose target space is the phase space under consideration. The global anomalies of this model are analyzed, and it is shown that its fermionic partition function is anomalous exactly if the underlying phase space is not a spin manifold, i.e. if metaplectic spinor fields cannot be introduced consistently. The sigma model is constructed by giving a path integral representation to the Lie transport of spinors along the Hamiltonian flow.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Robin Cockett ◽  
Cole Comfort ◽  
Priyaa Srinivasan

Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.


2007 ◽  
Vol 188 ◽  
pp. 107-131 ◽  
Author(s):  
Masaki Tsukamoto

AbstractThis paper is one step toward infinite energy gauge theory and the geometry of infinite dimensional moduli spaces. We generalize a gluing construction in the usual Yang-Mills gauge theory to an “infinite energy” situation. We show that we can glue an infinite number of instantons, and that the resulting ASD connections have infinite energy in general. Moreover they have an infinite dimensional parameter space. Our construction is a generalization of Donaldson’s “alternating method”.


2009 ◽  
Vol 24 (03) ◽  
pp. 193-211 ◽  
Author(s):  
ABHISHEK AGARWAL

Mass deformations of supersymmetric Yang–Mills theories in three spacetime dimensions are considered. The gluons of the theories are made massive by the inclusion of a nonlocal gauge and Poincaré invariant mass term due to Alexanian and Nair, while the matter fields are given standard Gaussian mass-terms. It is shown that the dimensional reduction of such mass-deformed gauge theories defined on R3 or R × T2 produces matrix quantum mechanics with massive spectra. In particular, all known massive matrix quantum mechanical models obtained by the deformations of dimensional reductions of minimal super Yang–Mills theories in diverse dimensions are shown also to arise from the dimensional reductions of appropriate massive Yang–Mills theories in three spacetime dimensions. Explicit formulas for the gauge theory actions are provided.


2001 ◽  
Vol 13 (10) ◽  
pp. 1281-1305 ◽  
Author(s):  
BRIAN C. HALL

This paper discusses the canonical quantization of (1+1)-dimensional Yang–Mills theory on a spacetime cylinder from the point of view of coherent states, or equivalently, the Segal–Bargmann transform. Before gauge symmetry is imposed, the coherent states are simply ordinary coherent states labeled by points in an infinite-dimensional linear phase space. Gauge symmetry is imposed by projecting the original coherent states onto the gauge-invariant subspace, using a suitable regularization procedure. We obtain in this way a new family of "reduced" coherent states labeled by points in the reduced phase space, which in this case is simply the cotangent bundle of the structure group K. The main result explained here, obtained originally in a joint work of the author with B. Driver, is this: The reduced coherent states are precisely those associated to the generalized Segal–Bargmann transform for K, as introduced by the author from a different point of view. This result agrees with that of K. Wren, who uses a different method of implementing the gauge symmetry. The coherent states also provide a rigorous way of making sense out of the quantum Hamiltonian for the unreduced system. Various related issues are discussed, including the complex structure on the reduced phase space and the question of whether quantization commutes with reduction.


2021 ◽  
Author(s):  
Jerzy Król ◽  
Krzysztof Bielas ◽  
Torsten Asselmeyer-Maluga

Abstract Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin-Löf. We extend this result and demonstrate that QM is algorithmic ω-random and generic precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo-Fraenkel Solovay random on infinite dimensional Hilbert spaces. Moreover it is more likely that there exists a standard transitive model of ZFC M where QM is expressed in reality than in the universe V of sets. Then every generic quantum measurement adds the infinite sequence, i.e. random real r ∈ 2ω, to M and the model undergoes random forcing extensions, M[r]. The entire process of forcing becomes the structural ingredient of QM and parallels similar constructions applied to spacetime in the quantum limit. This shows the structural resemblance of both in the limit. We discuss several questions regarding measurability and eventual practical applications of the extended Solovay randomness of QM. The method applied is the formalization based on models of ZFC, however, this is particularly well-suited technique to recognising randomness questions of QM. When one works in a constant model of ZFC or in axiomatic ZFC itself the issues considered here become mostly hidden.


Sign in / Sign up

Export Citation Format

Share Document