scholarly journals On the k-Buchsbaum property of powers of Stanley–Reisner ideals

2014 ◽  
Vol 213 ◽  
pp. 127-140
Author(s):  
Nguyên Công Minh ◽  
Yukio Nakamura

AbstractLetS=K[x1,x2,…,xn] be a polynomial ring over a fieldK. Let Δ be a simplicial complex whose vertex set is contained in {1, 2,…,n}. For an integerk≥ 0, we investigate thek-Buchsbaum property of residue class ringsS/I(t); andS/Itfor the Stanley-Reisner idealI=IΔ. We characterize thek-Buchsbaumness of such rings in terms of the simplicial complex Δ and the powert. We also give a characterization in the case whereIis the edge ideal of a simple graph.

2014 ◽  
Vol 213 ◽  
pp. 127-140 ◽  
Author(s):  
Nguyên Công Minh ◽  
Yukio Nakamura

AbstractLet S = K[x1,x2,…,xn] be a polynomial ring over a field K. Let Δ be a simplicial complex whose vertex set is contained in {1, 2,…,n}. For an integer k ≥ 0, we investigate the k-Buchsbaum property of residue class rings S/I(t); and S/It for the Stanley-Reisner ideal I = IΔ. We characterize the k-Buchsbaumness of such rings in terms of the simplicial complex Δ and the power t. We also give a characterization in the case where I is the edge ideal of a simple graph.


Author(s):  
Arvind Kumar ◽  
S. Selvaraja

Let [Formula: see text] be a finite simple graph and [Formula: see text] denote the corresponding edge ideal in a polynomial ring over a field [Formula: see text]. In this paper, we obtain upper bounds for the Castelnuovo–Mumford regularity of symbolic powers of certain classes of edge ideals. We also prove that for several classes of graphs, the regularity of symbolic powers of their edge ideals coincides with that of their ordinary powers.


Author(s):  
Qun Liu ◽  
Jiabao Liu

Let G[F,Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,Vk= {v1,v2,··· ,vk} is a subset of the vertex set of F and Hvis a simple graph of order m ≥ 2,v is a specified vertex of Hv. Also let G[F,Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek= {e1,e2,···ek} is a subset of the edge set of F and Huvis a simple graph of order m ≥ 3, uv is a specified edge of Huvsuch that Huv− u is isomorphic to Huv− v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of G[F,Vk, Hv] and G[F,Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and F, Huv, respectively.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


10.37236/1093 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Jakob Jonsson

Let $S_{m,n}$ be the graph on the vertex set ${\Bbb Z}_m \times {\Bbb Z}_n$ in which there is an edge between $(a,b)$ and $(c,d)$ if and only if either $(a,b) = (c,d\pm 1)$ or $(a,b) = (c \pm 1,d)$ modulo $(m,n)$. We present a formula for the Euler characteristic of the simplicial complex $\Sigma_{m,n}$ of independent sets in $S_{m,n}$. In particular, we show that the unreduced Euler characteristic of $\Sigma_{m,n}$ vanishes whenever $m$ and $n$ are coprime, thereby settling a conjecture in statistical mechanics due to Fendley, Schoutens and van Eerten. For general $m$ and $n$, we relate the Euler characteristic of $\Sigma_{m,n}$ to certain periodic rhombus tilings of the plane. Using this correspondence, we settle another conjecture due to Fendley et al., which states that all roots of $\det (xI-T_m)$ are roots of unity, where $T_m$ is a certain transfer matrix associated to $\{\Sigma_{m,n} : n \ge 1\}$. In the language of statistical mechanics, the reduced Euler characteristic of $\Sigma_{m,n}$ coincides with minus the partition function of the corresponding hard square model with activity $-1$.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


2017 ◽  
Vol 33 (2) ◽  
pp. 247-256
Author(s):  
JOSEF SLAPAL ◽  

In an undirected simple graph, we define connectedness induced by a set of walks of the same lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This result is used to introduce a graph on the vertex set Z2 with sets of walks that is obtained as the strong product of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in the graph introduced induces connectedness on Z2 that satisfies a digital analogue of the Jordan curve theorem. It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z2 for the study of digital images.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050083
Author(s):  
I. Tarawneh ◽  
R. Hasni ◽  
A. Ahmad ◽  
G. C. Lau ◽  
S. M. Lee

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text], respectively. An edge irregular [Formula: see text]-labeling of [Formula: see text] is a labeling of [Formula: see text] with labels from the set [Formula: see text] in such a way that for any two different edges [Formula: see text] and [Formula: see text], their weights [Formula: see text] and [Formula: see text] are distinct. The weight of an edge [Formula: see text] in [Formula: see text] is the sum of the labels of the end vertices [Formula: see text] and [Formula: see text]. The minimum [Formula: see text] for which the graph [Formula: see text] has an edge irregular [Formula: see text]-labeling is called the edge irregularity strength of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the exact value of edge irregularity strength of corona product of graphs with cycle.


2016 ◽  
Vol 5 (2) ◽  
pp. 132
Author(s):  
Essam El Seidy ◽  
Salah Eldin Hussein ◽  
Atef Mohamed

We consider a finite undirected and connected simple graph  with vertex set  and edge set .We calculated the general formulas of the spectra of a cycle graph and path graph. In this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and seidel adjacency matrix.


Sign in / Sign up

Export Citation Format

Share Document