Characterization of SSU and LSU rRNA genes of threeTrypanosoma (Herpetosoma) grosiisolates maintained in Mongolian jirds

Parasitology ◽  
2004 ◽  
Vol 130 (2) ◽  
pp. 157-167 ◽  
Author(s):  
H. SATO ◽  
A. OSANAI ◽  
H. KAMIYA ◽  
Y. OBARA ◽  
W. JIANG ◽  
...  

Trypanosoma (Herpetosoma) grosi, which naturally parasitizesApodemusspp., can experimentally infect Mongolian jirds (Meriones unguiculatus). Three isolates fromA. agrarius,A. peninsulae, andA. speciosus(named SESUJI, HANTO, and AKHA isolates, respectively) of different geographical origin (AKHA from Japan, and the others from Vladivostok), exhibited different durations of parasitaemia in laboratory jirds (2 weeks for HANTO, and 3 weeks for the others). To assess the genetic background of theseT. grosiisolates, their small (SSU) and large subunit (LSU) ribosomal RNA genes (rDNA) were sequenced along with those of 2 otherHerpetosomaspecies from squirrels. The SSU rDNA sequences of these 3 species along with available sequences of 3 otherHerpetosomatrypanosomes (T. lewisi,T. musculiandT. microti)seemed to reflect well the phylogenetic relationship of their hosts. Three isolates ofT. grosiexhibited base changes at 2–6 positions of 2019-base 18S rDNA, at 5–29 positions of 1817/1818-base 28Sα rDNA, or 1–5 positions of 1557–1559-base 28Sβ rDNA, and none was separated from the other 2 isolates by rDNA nucleotide sequences. Since base changes ofHerpetosomatrypanosomes at the level of inter- and intra-species might occur frequently in specified rDNA regions, the molecular analysis on these regions of rodent trypanosomes could help species/strain differentiation and systematic revision ofHerpetosomatrypanosome species, which must be more abundant than presently known.

Parasitology ◽  
1999 ◽  
Vol 118 (6) ◽  
pp. 541-551 ◽  
Author(s):  
N. E. COLLINS ◽  
B. A. ALLSOPP

We sequenced the rRNA genes and internal transcribed spacers (ITS) of several Theileria parva isolates in an attempt to distinguish between the causative agents of East coast fever and Corridor disease. The small subunit (SSU) and large subunit (LSU) rRNA genes from a cloned T. p. lawrencei parasite were sequenced; the former was identical to that of T. p. parva Muguga, and there were minor heterogeneities in the latter. The 5·8S gene sequences of 11 T. parva isolates were identical, but major differences were found in the ITS. Six characterization oligonucleotides were designed to hybridize within the variable ITS1 region; 93·5% of T. p. parva isolates examined were detected by probe TPP1 and 81·8% of T. p. lawrencei isolates were detected by TPL2 and/or TPL3a. There was no absolute distinction between T. p. parva and T. p. lawrencei and the former hybridized with fewer of the probes than did the latter. It therefore seems that a relatively homogenous subpopulation of T. parva has been selected in cattle from a more diverse gene pool in buffalo. The ITSs of both T. p. parva and T. p. lawrencei contained different combinations of identifiable sequence segments, resulting in a mosaic of segments in any one isolate, suggesting that the two populations undergo genetic recombination and that their gene pools are not completely separate.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1185
Author(s):  
Wenqian Wang ◽  
Huan Zhang ◽  
Jérôme Constant ◽  
Charles R. Bartlett ◽  
Daozheng Qin

The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.


1983 ◽  
Vol 3 (4) ◽  
pp. 587-595 ◽  
Author(s):  
K K Oishi ◽  
K K Tewari

mRNA coding for the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase was obtained by fractionating chloroplast polysomes on an affinity column, using anti-ribulose-1,5-bisphosphate carboxylase immunoglobulin G. Approximately 20% of the polysomal RNA specifically bound to the affinity column. LS mRNA was also isolated by fractionating chloroplast polysomal RNA on sucrose gradients. The LS mRNA fraction was identified by translation in vitro followed by immunoprecipitation with anti-ribulose-1,5-bisphosphate carboxylase immunoglobulin G. Labeled LS mRNA was hybridized to a genomic digests of pea chloroplast DNA. The LS gene was localized on a 3.55-kilobase pair BamHI fragment in SalI-SmaI DNA fragment 4. The BamHI fragment containing the LS gene was cloned, and a restriction endonuclease map was constructed. The LS gene was localized on a 1.9-kbp KpnI-EcoRI fragment. The LS gene was analyzed by electron microscopy, using the R loop mapping technique. LS mRNA was colinear with the gene, and its size was 1.35 +/- 0.2 kilobase pairs. When the LS mRNA was analyzed on methylmercury agarose gels, it comigrated with the 16S rRNA. The direction of transcription of the LS gene was in the same direction as that of the rRNA genes.


Parasitology ◽  
1990 ◽  
Vol 101 (1) ◽  
pp. 1-6 ◽  
Author(s):  
J. Ellis ◽  
J. Bumstead

SUMMARYrRNA and a heterologous cloned rDNA probe have been used to detect the rRNA genes of Eimeria species which infe the chicken, and has allowed the isolation and preliminary characterization of cloned rDNA sequences from a genomic DNA library of Eimeria tenella. It is demonstrated that rRNA and rDNA probes can be used to identify individual Eimeria species by the restriction fragment patterns detected after Southern hybridization. In addition, studies have shown that the large and small subunit rRNAs are expressed throughout sporulation.


1999 ◽  
Vol 112 (18) ◽  
pp. 3039-3047 ◽  
Author(s):  
H. Tseng ◽  
J.A. Biegel ◽  
R.S. Brown

Basonuclin is a zinc finger protein mainly expressed in keratinocytes of the basal layer of epidermis and the outer root sheath of hair follicles. It is also found in abundance in the germ cells of testis and ovary. In cultured keratinocytes, basonuclin is associated with chromatin in all phases of the cell cycle, including mitosis. By immunocytochemical methods, we demonstrate here that in mitosis basonuclin is associated with the short arms of the acrocentric chromosomes and with other loci on many metaphase chromosomes of human keratinocytes. Using the evolutionarily highly conserved N-terminal pair of zinc fingers in an electrophoresis mobility shift assay, we demonstrate that the DNA target sequences of basonuclin on the acrocentric chromosomes are likely to be within the promoter region of the 45S rRNA gene transcription unit. DNase I footprinting shows that basonuclin zinc fingers interact with the upstream control element of this promoter, which is necessary for the high level of transcription of the rRNA genes. This result suggests that basonuclin may be a tissue-specific transcription factor for the ribosomal RNA genes.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Zhaoqing Han ◽  
Kun Li ◽  
Houqiang Luo ◽  
Muhammad Shahzad ◽  
Khalid Mehmood

A study was conducted to reveal the characterization of the complete mitochondrial genome of Fischoederius elongatus derived from cows in Shanghai, China. Results indicated that the complete mt genome of F. elongatus was 14,288 bp and contained 12 protein-coding genes (cox1-3, nad1-6, nad4L, atp6, and cytb), 22 transfer RNA genes, and two ribosomal RNA genes (l-rRNA and s-rRNA). The overall A + T content of the mt genome was 63.83%, and the nucleotide composition was A (19.83%), C (9.75%), G (26.43%), and T (44.00%). A total of 3284 amino acids were encoded by current F. elongatus isolate mt genome, TTT (Phe) (9.84%) and TTG (Leu) (7.73%) codon were the most frequent amino acids, whereas the ACC (Thr) (0.06%), GCC (Ala) (0.09%), CTC (Leu) (0.09%), and AAC (Asn) (0.09%) codon were the least frequent ones. At the third codon position of F. elongatus mt protein genes, T (50.82%) was observed most frequently and C (5.85%) was the least one. The current results can contribute to epidemiology diagnosis, molecular identification, taxonomy, genetic, and drug development researches about this parasite species in cattle.


Parasitology ◽  
2002 ◽  
Vol 124 (3) ◽  
pp. 307-313 ◽  
Author(s):  
J. DVOŘÁK ◽  
š. VAŇÁČOVÁ ◽  
V. HAMPL ◽  
J. FLEGR ◽  
P. HORÁK

Schistosomes are parasites of considerable medical and veterinary importance and, therefore, all aspects of their biology have been intensively studied. In contrast, our knowledge of species of the largest genus, Trichobilharzia, is insufficient. Because morphological characterization of Trichobilharzia species provides a limited number of criteria for species determination, molecular data are required. In the present paper, we sequenced internal transcribed spacers ITS1 and ITS2, and 5·8S ribosomal RNA (rRNA) genes of 3 European Trichobilharzia species (T. regenti, T. szidati and T. franki). We showed that ITS1 and ITS2 sequences can be used in species identification. Repetitive elements were found in ITS1 of all 3 Trichobilharzia species; their number and length varied depending on the species. Phylogenetic analysis showed that the visceral T. franki is more related to the nasal T. regenti, than to the visceral T. szidati. The newly designed primer, which is specific for T. regenti, might be used as a tool for diagnosis of this potential pathogen.


Parasitology ◽  
2009 ◽  
Vol 136 (7) ◽  
pp. 771-782 ◽  
Author(s):  
P. SEGADE ◽  
C. P. KHER ◽  
D. H. LYNN ◽  
R. IGLESIAS

SUMMARYRenal infections by parasitic ciliates were studied in adult snails of Helix aspersa aspersa and Helix aspersa maxima collected from 2 mixed rearing system-based heliciculture farms located in Galicia (NW Spain). The occurrence of ciliates was also examined in slugs (Deroceras reticulatum) invading the greenhouses where first growing and fattening of snails is carried out. Histological examinations revealed a severe destruction of the renal epithelium in heavily infected hosts. Three ciliate isolates, one from each host species, were obtained and grown in axenic cultures. Cultured and parasitic ciliates were characterized morphologically and morphometrically. In addition, the encystment behaviour, the occurrence of autogamy, and the sequences of the mitochondrial cytochrome-c oxidase subunit 1 (cox1) and the small subunit ribosomal RNA (SSU rRNA) genes were also studied in the 3 isolates. A polymorphic life cycle involving resting and reproductive cysts, together with the morphological and morphometrical characteristics and the confirmation that autogamy occurs within cysts, demonstrate that our ciliates belong to the species Tetrahymena rostrata (Kahl, 1926) Corliss, 1952. The 3 isolates formed a well-supported clade using both genetic markers, and were clearly separate from the strain ATCC® 30770™, which has been identified as Tetrahymena rostrata. We argue that our Spanish isolates should be regarded as Tetrahymena rostrata, and that the ATCC isolate should be regarded as a misidentification as neither cytological nor cytogenetical support for its identity has been presented.


Sign in / Sign up

Export Citation Format

Share Document