scholarly journals Molecular characterization ofNeospora caninumMAG1, a dense granule protein secreted into the parasitophorous vacuole, and associated with the cyst wall and the cyst matrix

Parasitology ◽  
2010 ◽  
Vol 137 (11) ◽  
pp. 1605-1619 ◽  
Author(s):  
CHRISTOPHE GUIONAUD ◽  
ANDREW HEMPHILL ◽  
MEIKE MEVISSEN ◽  
FERIAL ALAEDDINE

SUMMARYInNeospora caninumandToxoplasma gondii, the parasitophorous vacuole (PV) is synthesized at the time of infection. During tachyzoite-to-bradyzoite stage conversion, the PV is later transformed into a tissue cyst that allows parasites to survive in their host for extended periods of time. We report on the characterization of NcMAG1, theN. caninumorthologue ofT. gondiiMAG1 (matrix antigen 1; TgMAG1). The 456 amino acid predicted NcMAG1 protein is 54% identical to TgMAG1. By immunoblotting, a rabbit antiserum raised against recombinant NcMAG1 detected a major product of ~67 kDa in extracts ofN. caninumtachyzoite-infected Vero cells, which was stained more prominently in extracts of infected Vero cells treated to inducein vitrobradyzoite conversion. Immunofluorescence and TEM localized the protein mainly within the cyst wall and the cyst matrix. In both tachyzoites and bradyzoites, NcMAG1 was associated with the parasite dense granules. Comparison between NcMAG1 and TgMAG1 amino acid sequences revealed that the C-terminal conserved regions exhibit 66% identity, while the N-terminal variable regions exhibit only 32% identity. Antibodies against NcMAG1-conserved region cross-reacted with the orthologuous protein inT. gondiibut those against the variable region did not. This indicates that the variable region possesses unique antigenic characteristics.

2000 ◽  
Vol 74 (19) ◽  
pp. 9028-9038 ◽  
Author(s):  
J.-B. Nousbaum ◽  
S. J. Polyak ◽  
S. C. Ray ◽  
D. G. Sullivan ◽  
A. M. Larson ◽  
...  

ABSTRACT The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy in clinical studies. In this study, the relationship between NS5A mutations and selection pressures before and during antiviral therapy and virologic response to therapy were investigated. Full-length NS5A clones were sequenced from 20 HCV genotype 1-infected patients in a prospective, randomized clinical trial of IFN induction (daily) therapy and IFN plus ribavirin combination therapy. Pretreatment NS5A nucleotide and amino acid phylogenies did not correlate with clinical IFN responses and domains involved in NS5A functions in vitro were all well conserved before and during treatment. A consensus IFN sensitivity-determining region (ISDR237–276) sequence associated with IFN resistance was not found, although the presence of Ala245 within the ISDR was associated with nonresponse to treatment in genotype 1a-infected patients (P < 0.01). There were more mutations in the 26 amino acids downstream of the ISDR required for PKR binding in pretreatment isolates from responders versus nonresponders in both HCV-1a- and HCV-1b-infected patients (P < 0.05). In HCV-1a patients, more amino acid changes were observed in isolates from IFN-sensitive patients (P < 0.001), and the mutations appeared to be concentrated in two variable regions in the C terminus of NS5A, that corresponded to the previously described V3 region and a new variable region, 310 to 330. Selection of pretreatment minor V3 quasispecies was observed within the first 2 to 6 weeks of therapy in responders but not nonresponders, whereas the ISDR and PKR binding domains did not change in either patient response group. These data suggest that host-mediated selective pressures act primarily on the C terminus of NS5A and that NS5A can perturb or evade the IFN-induced antiviral response using sequences outside of the putative ISDR. Mechanistic studies are needed to address the role of the C terminus of NS5A in HCV replication and antiviral resistance.


1970 ◽  
Vol 117 (4) ◽  
pp. 641-660 ◽  
Author(s):  
E. M. Press ◽  
N. M. Hogg

The amino acid sequences of the Fd fragments of two human pathological immunoglobulins of the immunoglobulin G1 class are reported. Comparison of the two sequences shows that the heavy-chain variable regions are similar in length to those of the light chains. The existence of heavy chain variable region subgroups is also deduced, from a comparison of these two sequences with those of another γ 1 chain, Eu, a μ chain, Ou, and the partial sequence of a fourth γ 1 chain, Ste. Carbohydrate has been found to be linked to an aspartic acid residue in the variable region of one of the γ 1 chains, Cor.


2004 ◽  
Vol 72 (1) ◽  
pp. 576-583 ◽  
Author(s):  
Nathalie Vonlaufen ◽  
Nicole Guetg ◽  
Arunasalam Naguleswaran ◽  
Norbert Müller ◽  
Camilla Björkman ◽  
...  

ABSTRACT We report on an optimized method for the in vitro culture of tissue cyst-forming Neospora caninum bradyzoites in Vero cells and the separation of viable parasites from host cells. Treatment of tachyzoite-infected Vero cell cultures with 17 μM sodium nitroprusside for 8 days severely scaled down parasite proliferation, led to reduced expression of tachyzoite surface antigens, and induced the expression of the bradyzoite marker NcBAG1 and the cyst wall antigen recognized by the monoclonal antibody MAbCC2. Transmission electron microscopy demonstrated that intracellular parasites were located within parasitophorous vacuoles that were surrounded by a cyst wall-like structure, and the dense granule antigens NcGRA1, NcGRA2, and NcGRA7 were incorporated into the cyst wall. Adhesion-invasion assays employing purified tachyzoites and bradyzoites showed that tachyzoites adhered to, and invaded, Vero cells with higher efficiency than bradyzoites. However, removal of terminal sialic acid residues from either the host cell or the parasite surface increased the invasion of Vero cells by bradyzoites, but not tachyzoites.


1987 ◽  
Vol 166 (2) ◽  
pp. 550-564 ◽  
Author(s):  
M M Newkirk ◽  
R A Mageed ◽  
R Jefferis ◽  
P P Chen ◽  
J D Capra

Evidence derived from the complete amino acid sequences of the variable regions of both the heavy and light chains of two members (BOR and KAS) of the Wa idiotypic family of human rheumatoid factors suggests that not only are the light chains of these molecules derived from possibly one variable region gene segment, but the heavy chain variable regions are all derived from the VHI subgroup of human V region genes. These molecules exhibit a surprising conservation in the size of D region, and all use the JH4 gene element. This restriction in use of VL, VH, D, and JH suggests all of these elements may play a crucial role in either antigen binding and/or expression of the crossreactive idiotype.


2016 ◽  
Author(s):  
Wesley G. Chen ◽  
Jacob Witten ◽  
Scott C. Grindy ◽  
Niels Holten-Andersen ◽  
Katharina Ribbeck

AbstractThe nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG-domains consist of repeating units of FxFG, FG, or GLFG sequences, which can be interspersed with highly charged amino acid sequences. Despite the high density of charge exhibited in certain FG-domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Studying how individual charged amino acids contribute to nuclear pore selectivity is challenging with modern in vivo and in vitro techniques due to the complexity of nucleoporin sequences. Here, we present a rationally designed approach to deconstruct essential components of nucleoporins down to 14 amino acid sequences. With these nucleoporin-based peptides, we systematically dissect how charge type and placement of charge influences self-assembly and selective binding of FG-containing gels. Specifically, we find that charge type determines which hydrophobic substrates FG sequences recognize while spatial localization of charge tunes hydrophobic self-assembly and receptor selectivity of FG sequences.


2019 ◽  
Author(s):  
Lucia Fargnoli ◽  
Esteban A. Panozzo-Zénere ◽  
Lucas Pagura ◽  
María Julia Barisón ◽  
Julia A. Cricco ◽  
...  

L-Proline is an important amino acid for the pathogenic protists belonging to <i>Trypanosoma</i> and <i>Leishmania </i>genera. In <i>Trypanosoma cruzi</i>, the etiological agent of Chagas disease, this amino acid is involved in fundamental biological processes such as ATP production, differentiation of the insect and intracellular stages, the host cell infection and the resistance to a variety of stresses, including nutritional and osmotic as well as oxidative imbalance. In this study, we explore the L-Proline uptake as a chemotherapeutic target for <i>T. cruzi</i>. For this, we propose a novel rational to design inhibitors containing this amino acid as a recognizable motif. This rational consists of conjugating the amino acid (proline in this case) to a linker and a variable region able to block the transporter. We obtained a series of sixteen 1,2,3-triazolyl-proline derivatives through alkylation and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry) for <i>in vitro</i> screening against <i>T. cruzi </i>epimastigotes, trypanocidal activity and proline uptake. We successfully obtained inhibitors that are able to interfere with the amino acid uptake, which validated the first example of a rationally designed chemotherapeutic agent targeting a metabolite's transport. Additionally, we designed and prepared fluorescent analogues of the inhibitors that were successfully taken up by <i>T. cruzi</i>, allowing following up their intracellular fate. In conclusion, we successfully designed and produced a series of metabolite uptake inhibitors. This is one of few examples of rationally designed amino acid transporter inhibitor, being the first case where the strategy is applied on the development of chemotherapy against Chagas disease. This unprecedented development is remarkable having in mind that only a small percent of the metabolite transporters has been studied at the structural and/or molecular level.


2021 ◽  
Author(s):  
Amrutha Bindu ◽  
Lakshmi Devi

Abstract The focus of present study was to characterize antimicrobial peptide produced by probiotic cultures, Enterococcus durans DB-1aa (MCC4243), Lactobacillus plantarum Cu2-PM7 (MCC4246) and Lactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus and E. coli. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound after ion-exchange chromatography was found to be thermoresistant and stable under wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, a-amylase and lipase. The apparent molecular weight of bacteriocin from MCC4243 and MCC4246 was found to be 3.5 KDa. Translated partial amino acid sequence of plnA gene in MCC4246 displayed 48 amino acid sequences showing 100% similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 β sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The functions on cytoplasm show 10.82 isoelectric point and 48.6% hydrophobicity. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts “KSSAYSLQMGATAIKQVKKLFKKWGW” as peptide responsible for antimicrobial activity. The study provides information about broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as biopreservative agents.


Author(s):  
Siyan Zhao ◽  
Chen Zhang ◽  
Matthew J. Rogers ◽  
Xuejie Zhao ◽  
Jianzhong He

As a group, Dehalococcoides dehalogenate a wide range of organohalide pollutants but the range of organohalide compounds that can be utilized for reductive dehalogenation differs among the Dehalococcoides strains. Dehalococcoides lineages cannot be reliably disambiguated in mixed communities using typical phylogenetic markers, which often confounds bioremediation efforts. Here, we describe a computational approach to identify Dehalococcoides genetic markers with improved discriminatory resolution. Screening core genes from the Dehalococcoides pangenome for degree of similarity and frequency of 100% identity found a candidate genetic marker encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function. This gene exhibits the fewest completely identical amino acid sequences and among the lowest average amino acid sequence identity in the core pangenome. Primers targeting BNR could effectively discriminate between 40 available BNR sequences ( in silico ) and 10 different Dehalococcoides isolates ( in vitro ). Amplicon sequencing of BNR fragments generated from 22 subsurface soil samples revealed a total of 109 amplicon sequence variants, suggesting a high diversity of Dehalococcoides distributed in environment. Therefore, the BNR gene can serve as an alternative genetic marker to differentiate strains of Dehalococcoides in complicated microbial communities. Importance The challenge of discriminating between phylogenetically similar but functionally distinct bacterial lineages is particularly relevant to the development of technologies seeking to exploit the metabolic or physiological characteristics of specific members of bacterial genera. A computational approach was developed to expedite screening of potential genetic markers among phylogenetically affiliated bacteria. Using this approach, a gene encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function was selected and evaluated as a genetic marker to differentiate strains of Dehalococcoides , an environmentally relevant genus of bacteria whose members can transform and detoxify a range of halogenated organic solvents and persistent organic pollutants, in complex microbial communities to demonstrate the validity of the approach. Moreover, many apparently phylogenetically distinct, currently uncharacterized Dehalococcoides were detected in environmental samples derived from contaminated sites.


2000 ◽  
Vol 68 (10) ◽  
pp. 5679-5689 ◽  
Author(s):  
Qijing Zhang ◽  
Jerrel C. Meitzler ◽  
Shouxiong Huang ◽  
Teresa Morishita

ABSTRACT The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. To begin to dissect the biological functions and antigenic features of this protein, the gene (designatedcmp) encoding MOMP was identified and characterized from 22 strains of C. jejuni and one strain of C. coli. It was shown that the single-copy cmp locus encoded a protein with characteristics of bacterial outer membrane proteins. Prediction from deduced amino acid sequences suggested that each MOMP subunit consisted of 18 β-strands connected by short periplasmic turns and long irregular external loops. Alignment of the amino acid sequences of MOMP from different strains indicated that there were seven localized variable regions dispersed among highly conserved sequences. The variable regions were located in the putative external loop structures, while the predicted β-strands were formed by conserved sequences. The sequence homology of cmp appeared to reflect the phylogenetic proximity of C. jejuni strains, since strains with identical cmp sequences had indistinguishable or closely related macrorestriction fragment patterns. Using recombinant MOMP and antibodies recognizing linear or conformational epitopes of the protein, it was demonstrated that the surface-exposed epitopes of MOMP were predominantly conformational in nature. These findings are instrumental in the design of MOMP-based diagnostic tools and vaccines.


Sign in / Sign up

Export Citation Format

Share Document