conformational epitopes
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 33)

H-INDEX

38
(FIVE YEARS 4)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2525
Author(s):  
Mariko Saito ◽  
Hiroyuki Tsukagoshi ◽  
Mitsuru Sada ◽  
Soyoka Sunagawa ◽  
Tatsuya Shirai ◽  
...  

We performed evolution, phylodynamics, and reinfection-related antigenicity analyses of respiratory syncytial virus subgroup A (RSV-A) fusion (F) gene in globally collected strains (1465 strains) using authentic bioinformatics methods. The time-scaled evolutionary tree using the Bayesian Markov chain Monte Carlo method estimated that a common ancestor of the RSV-A, RSV-B, and bovine-RSV diverged at around 450 years ago, and RSV-A and RSV-B diverged around 250 years ago. Finally, the RSV-A F gene formed eight genotypes (GA1‑GA7 and NA1) over the last 80 years. Phylodynamics of RSV-A F gene, including all genotype strains, increased twice in the 1990s and 2010s, while patterns of each RSV-A genotype were different. Phylogenetic distance analysis suggested that the genetic distances of the strains were relatively short (less than 0.05). No positive selection sites were estimated, while many negative selection sites were found. Moreover, the F protein 3D structure mapping and conformational epitope analysis implied that the conformational epitopes did not correspond to the neutralizing antibody binding sites of the F protein. These results suggested that the RSV-A F gene is relatively conserved, and mismatches between conformational epitopes and neutralizing antibody binding sites of the F protein are responsible for the virus reinfection.


Antibodies ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 46
Author(s):  
Christopher P. Mattison ◽  
Barry Vant-Hull ◽  
Ana Cecilia Ribeiro de Castro ◽  
Heidi J. Chial ◽  
Yvette Bren-Mattison ◽  
...  

Ana o 3 is an immuno-dominant cashew nut allergen. Four monoclonal antibodies to Ana o 3 (2H5, 6B9C1, 19C9A2, and 5B7F8) were characterized by ELISA and in silico modeling. The 2H5 antibody was the only antibody specific for cashew nut extract. In addition to cashew nut extract, the 6B9C1 and 19C9A2 antibodies recognized pistachio extract, and the 5B7F8 recognized pecan extract. All four antibodies recognized both recombinant Ana o 3.0101 and native Ana o 3. ELISA assays following treatment of purified Ana o 3 with a reducing agent indicated that the 6B9C1 and 19C9A2 antibodies likely recognize conformational epitopes, while the 2H5 and 5B7F8 antibodies likely recognize linear epitopes. In silico modeling predicted distinct epitopes for each of the anti-Ana o 3 antibodies. Screening extracts from 11 Brazilian cashew nut cultivars using all four antibodies showed slight differences in Ana o 3 bindings, demonstrating that these antibodies could identify cultivars with varying allergen content.


Author(s):  
Stefanie Schmalz ◽  
Vanessa Mayr ◽  
Alexandra Shosherova ◽  
Barbara Gepp ◽  
Daniela Ackerbauer ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Marni E. Cueno ◽  
Kenichi Imai

Coronavirus disease 2019 (COVID-19) pandemic has been attributed to SARS-CoV-2 (SARS2) and, consequently, SARS2 has evolved into multiple SARS2 variants driving subsequent waves of infections. In particular, variants of concern (VOC) were identified to have both increased transmissibility and virulence ascribable to mutational changes occurring within the spike protein resulting to modifications in the protein structural orientation which in-turn may affect viral pathogenesis. However, this was never fully elucidated. Here, we generated spike models of endemic HCoVs (HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV), original SARS2, and VOC (alpha, beta, gamma, delta). Model quality check, structural superimposition, and structural comparison based on RMSD values, TM scores, and contact mapping were all performed. We found that: 1) structural comparison between the original SARS2 and VOC whole spike protein model have minor structural differences (TM > 0.98); 2) the whole VOC spike models putatively have higher structural similarity (TM > 0.70) to spike models from endemic HCoVs coming from the same phylogenetic cluster; 3) original SARS2 S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM = 1.0) and S1-NTD (TM > 0.96); and 4) endemic HCoV S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM > 0.70) and S1-NTD (TM > 0.70) models belonging to the same phylogenetic cluster. Overall, we propose that structural similarities (possibly ascribable to similar conformational epitopes) may help determine immune cross-reactivity, whereas, structural differences (possibly associated with varying conformational epitopes) may lead to viral infection (either reinfection or breakthrough infection).


2021 ◽  
Vol 49 ◽  
pp. 1-6
Author(s):  
Ana P Valente ◽  
Mariana Manzano-Rendeiro

2021 ◽  
pp. 113121
Author(s):  
Emmanuel Assana ◽  
André Pagnah Zoli ◽  
Charles G. Gauci ◽  
Marshall W. Lightowlers ◽  
Pierre Dorny

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kuang-Yu Jen ◽  
Ari Auron

Classic antiglomerular basement membrane (anti-GBM) disease is an exceedingly rare but extremely aggressive form of glomerulonephritis, typically caused by autoantibodies directed against cryptic, conformational epitopes within the noncollagenous domain of the type IV collagen alpha-3 subunit. Pathologic diagnosis is established by the presence of strong, diffuse, linear staining for immunoglobulin on immunofluorescence microscopy. Recently, patients with atypical clinical and pathologic findings of anti-GBM disease have been described. These patients tend to have an indolent clinical course, without pulmonary involvement, and laboratory testing rarely reveals the presence of anti-GBM antibodies. Specific guidelines for the treatment and management of these patients are unclear. Here, we describe a case of atypical anti-GBM disease in a young child who presented with hematuria and prominent proteinuria. Throughout the course of his illness, creatinine remained normal. He was conservatively treated with steroids and rituximab, resulting in resolution of his clinical symptoms and normalization of laboratory findings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Helder V. Ribeiro-Filho ◽  
Lais D. Coimbra ◽  
Alexandre Cassago ◽  
Rebeca P. F. Rocha ◽  
João Victor da Silva Guerra ◽  
...  

AbstractMayaro virus (MAYV) is an emerging arbovirus of the Americas that may cause a debilitating arthritogenic disease. The biology of MAYV is not fully understood and largely inferred from related arthritogenic alphaviruses. Here, we present the structure of MAYV at 4.4 Å resolution, obtained from a preparation of mature, infective virions. MAYV presents typical alphavirus features and organization. Interactions between viral proteins that lead to particle formation are described together with a hydrophobic pocket formed between E1 and E2 spike proteins and conformational epitopes specific of MAYV. We also describe MAYV glycosylation residues in E1 and E2 that may affect MXRA8 host receptor binding, and a molecular “handshake” between MAYV spikes formed by N262 glycosylation in adjacent E2 proteins. The structure of MAYV is suggestive of structural and functional complexity among alphaviruses, which may be targeted for specificity or antiviral activity.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Tomoko Honda ◽  
Sumiko Gomi ◽  
Daisuke Yamane ◽  
Fumihiko Yasui ◽  
Takuya Yamamoto ◽  
...  

ABSTRACT Antibody detection is crucial for monitoring host immune responses to specific pathogen antigens (Ags) and evaluating vaccine efficacies. The luciferase immunoprecipitation system (LIPS) was developed for sensitive detection of Ag-specific antibodies in sera from various species. In this study, we describe NanoLIPS, an improved LIPS assay based on NanoLuciferase (NLuc), and employ the assay for monitoring antibody responses following influenza virus infection or vaccination. We generated recombinant influenza virus hemagglutinin (HA) proteins tagged with N-terminal (N-NLuc-HA) or C-terminal (C-NLuc-HA) NLuc reporters. NLuc-HA yielded an at least 20-fold higher signal-to-noise ratio than did a LIPS assay employing a recombinant HA-Gaussia princeps luciferase (GLuc) fusion protein. NanoLIPS-based detection of anti-HA antibodies yielded highly reproducible results with a broad dynamic range. The levels of antibodies against C-NLuc-HA generated by mice vaccinated with recombinant vaccinia virus DIs strain expressing an influenza virus HA protein (rDIs-HA) was significantly correlated with the protective effect elicited by the rDIs-HA vaccine. C-NLuc-HA underwent glycosylation with native conformations and assembly to form a trimeric structure and was detected by monoclonal antibodies that detect conformational epitopes present on the globular head or stalk domain of HA. Therefore, NanoLIPS is applicable for evaluating vaccine efficacy. We also showed that C-NLuc-HA is applicable for detection of HA-specific antibodies in sera from various experimental species, including mouse, cynomolgus macaque, and tree shrew. Thus, NanoLIPS-based detection of HA offers a simple and high-sensitivity method that detects native conformational epitopes and can be used in various experimental animal models. IMPORTANCE Influenza virus HA-specific antibodies can be detected via the hemagglutination inhibition (HI) assay, the neutralization (NT) assay, and the enzyme-linked immunosorbent assay (ELISA). However, these assays have some drawbacks, including narrow dynamic range and the requirement for large amounts of sera. As an alternative to an ELISA-based method, luciferase immunoprecipitation system (LIPS) was developed. We focused on NanoLuciferase (NLuc), which has a small size, higher intensity, and longer stability. In this study, we developed a technically feasible and highly sensitive method for detecting influenza virus-specific antibodies using a NLuc-tagged recombinant HA protein produced in mammalian cells. HA with a C-terminal NLuc extension (C-NLuc-HA) was glycosylated and formed trimeric complexes when expressed in mammalian cells. Furthermore, C-NLuc-HA was recognized not only by monoclonal antibodies that bind to the globular head domain but also by those that bind to the stalk domain. We also demonstrated that the data obtained by this assay correlate with the protection of an experimental vaccine in animal models.


Sign in / Sign up

Export Citation Format

Share Document