scholarly journals Sequence Polymorphism, Predicted Secondary Structures, and Surface-Exposed Conformational Epitopes of Campylobacter Major Outer Membrane Protein

2000 ◽  
Vol 68 (10) ◽  
pp. 5679-5689 ◽  
Author(s):  
Qijing Zhang ◽  
Jerrel C. Meitzler ◽  
Shouxiong Huang ◽  
Teresa Morishita

ABSTRACT The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. To begin to dissect the biological functions and antigenic features of this protein, the gene (designatedcmp) encoding MOMP was identified and characterized from 22 strains of C. jejuni and one strain of C. coli. It was shown that the single-copy cmp locus encoded a protein with characteristics of bacterial outer membrane proteins. Prediction from deduced amino acid sequences suggested that each MOMP subunit consisted of 18 β-strands connected by short periplasmic turns and long irregular external loops. Alignment of the amino acid sequences of MOMP from different strains indicated that there were seven localized variable regions dispersed among highly conserved sequences. The variable regions were located in the putative external loop structures, while the predicted β-strands were formed by conserved sequences. The sequence homology of cmp appeared to reflect the phylogenetic proximity of C. jejuni strains, since strains with identical cmp sequences had indistinguishable or closely related macrorestriction fragment patterns. Using recombinant MOMP and antibodies recognizing linear or conformational epitopes of the protein, it was demonstrated that the surface-exposed epitopes of MOMP were predominantly conformational in nature. These findings are instrumental in the design of MOMP-based diagnostic tools and vaccines.

1999 ◽  
Vol 37 (4) ◽  
pp. 1137-1143 ◽  
Author(s):  
Xue-Jie Yu ◽  
Jere W. McBride ◽  
David H. Walker

The Ehrlichia chaffeensis 28-kDa outer membrane protein (p28) gene was sequenced completely by genomic walking with adapter PCR. The DNA sequence of the p28 gene was nearly identical to the previously reported sequence (N. Ohashi, N. Zhi, Y. Zhang, and Y. Rikihisa, Infect. Immun. 66:132–139, 1998), but analysis of a further 75 bp on the 5′ end of the gene revealed DNA that encoded a 25-amino-acid signal sequence. The leader sequence was removed from the N terminus of a 30-kDa precursor to generate the mature p28 protein. A monoclonal antibody (MAb), 1A9, recognizing four outer membrane proteins of E. chaffeensis (Arkansas strain) including the 25-, 26-, 27-, and 29-kDa proteins (X.-J. Yu, P. Brouqui, J. S. Dumler, and D. Raoult, J. Clin. Microbiol. 31:3284–3288, 1993) reacted with the recombinant p28 protein. This result indicated that the four proteins recognized by MAb 1A9 were encoded by the multiple genes of the 28-kDa protein family. DNA sequence alignment analysis revealed divergence of p28 among all five human isolates of E. chaffeensis. The E. chaffeensis strains could be divided into three genetic groups on the basis of the p28 gene. The first group consisted of the Sapulpa and St. Vincent strains. They had predicted amino acid sequences identical to each other. The second group contained strain 91HE17 and strain Jax, which only showed 0.4% divergence from each other. The third group contained the Arkansas strain only. The amino acid sequences of p28 differed by 11% between the first two groups, by 13.3% between the first and third groups, and by 13.1% between the second and third groups. The presence of antigenic variants of p28 among the strains of E. chaffeensis and the presence of multiple copies of heterogeneous genes suggest a possible mechanism by which E. chaffeensismight evade the host immune defenses. Whether or not immunization with the p28 of one strain of E. chaffeensis would confer cross-protection against other strains needs to be investigated.


2001 ◽  
Vol 14 (4) ◽  
pp. 555-561 ◽  
Author(s):  
Saul Burdman ◽  
Gabriella Dulguerova ◽  
Yaacov Okon ◽  
Edouard Jurkevitch

The major outer membrane protein (MOMP) of the nitrogen-fixing rhizobacterium Azospirillum brasilense strain Cd was purified and isolated by gel filtration, and antiserum against this protein was obtained. A screening of the binding of outer membrane proteins (OMPs) of A. brasilense to membrane-immobilized root extracts of various plant species revealed different affinities for the MOMP, with a stronger adhesion to extracts of cereals in comparison with legumes and tomatoes. Moreover, this protein was shown to bind to roots of different cereal seedlings in an in vitro adhesion assay. Incubation of A. brasilense cells with MOMP-antiserum led to fast agglutination, indicating that the MOMP is a surface-exposed protein. Cells incubated with Fab fragments obtained from purified MOMP-antiserum immunoglobulin G exhibited significant inhibition of bacterial aggregation as compared with controls. Bacteria preincubated with Fab fragments showed weaker adhesion to corn roots in comparison to controls without Fab fragments. These findings suggest that the A. brasilense MOMP acts as an adhesin involved in root adsorption and cell aggregation of this bacterium.


2001 ◽  
Vol 183 (8) ◽  
pp. 2686-2690 ◽  
Author(s):  
Regina J. Tanzer ◽  
Thomas P. Hatch

ABSTRACT We used a photoactivatable, lipophilic reagent, 3′-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, to label proteins in the outer membrane of elementary bodies ofChlamydia trachomatis LGV serovar L2 and mass spectrometry to identify the labeled proteins. The identified proteins were polymorphic outer membrane proteins E, G, and H, which were made late in the developmental cycle, the major outer membrane protein, and a mixture of 46-kDa proteins consisting of the open reading frame 623 protein and possibly a modified form of the major outer membrane protein.


1999 ◽  
Vol 45 (8) ◽  
pp. 658-669 ◽  
Author(s):  
Robert S Negm ◽  
Thomas G Pistole

Macrophages recognize, adhere to, and phagocytose Salmonella typhimurium. The major outer membrane protein OmpC is a candidate ligand for macrophage recognition. To confirm this we used transposon mutagenesis to develop an ompC-deficient mutant in a known virulent strain of S. typhimurium; mutant and wild type were compared in macrophage adherence and association assays. Radiolabeled wild type S. typhimurium bound to macrophages at five-fold higher levels than did the ompC mutant. In association assays, macrophages in monolayers bound and internalized three-fold more wild type than mutant, while macrophages in suspension bound and internalized 40-fold more wild type than mutant. The ompC gene of our test strain of S. typhimurium contains several discrete differences compared with the ompC genes of Salmonella typhi and Escherichia coli. The deduced OmpC amino acid sequence of S. typhimurium shares 77 and 98% identity with OmpC amino acid sequences of E. coli and S. typhi, respectively. Evidence from this study supports a role for the OmpC protein in initial recognition by macrophages and distinguishes regions of this protein that potentially participate in host-cell recognition of bacteria by phagocytic cells.Key words: Salmonella, porin, macrophage, outer membrane protein, DNA sequencing.


2008 ◽  
Vol 76 (5) ◽  
pp. 2063-2069 ◽  
Author(s):  
David E. Hoke ◽  
Suhelen Egan ◽  
Paul A. Cullen ◽  
Ben Adler

ABSTRACT LipL32 is the major outer membrane protein in pathogenic Leptospira. It is highly conserved throughout pathogenic species and is expressed in vivo during human infection. While these data suggest a role in pathogenesis, a function for LipL32 has not been defined. Outer membrane proteins of gram-negative bacteria are the first line of molecular interaction with the host, and many have been shown to bind host extracellular matrix (ECM). A search for leptospiral ECM-interacting proteins identified the major outer membrane protein, LipL32. To verify this finding, recombinant LipL32 was expressed in Escherichia coli and was found to bind Matrigel ECM and individual components of ECM, including laminin, collagen I, and collagen V. Likewise, an orthologous protein found in the genome of Pseudoalteromonas tunicata strain D2 was expressed and found to be functionally similar and immunologically cross-reactive. Lastly, binding activity was mapped to the C-terminal 72 amino acids. These studies show that LipL32 and an orthologous protein in P. tunicata are immunologically cross-reactive and function as ECM-interacting proteins via a conserved C-terminal region.


2000 ◽  
Vol 66 (6) ◽  
pp. 2318-2324 ◽  
Author(s):  
Nicolas Guiliani ◽  
Carlos A. Jerez

ABSTRACT Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterizedomp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane.


2008 ◽  
Vol 8 (4) ◽  
pp. 207-215 ◽  
Author(s):  
Pragya Srivastava ◽  
Rishein Gupta ◽  
Hem Chandra Jha ◽  
Rajneesh Jha ◽  
Apurb Rashmi Bhengraj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document