Conserved peptide sequences bind to actin and enolase on the surface of Plasmodium berghei ookinetes

Parasitology ◽  
2011 ◽  
Vol 138 (11) ◽  
pp. 1341-1353 ◽  
Author(s):  
J. HERNÁNDEZ-ROMANO ◽  
M. H. RODRÍGUEZ ◽  
V. PANDO ◽  
J. A. TORRES-MONZÓN ◽  
A. ALVARADO-DELGADO ◽  
...  

SUMMARYThe description of Plasmodium ookinete surface proteins and their participation in the complex process of mosquito midgut invasion is still incomplete. In this study, using phage display, a consensus peptide sequence (PWWP) was identified in phages that bound to the Plasmodium berghei ookinete surface and, in selected phages, bound to actin and enolase in overlay assays with ookinete protein extracts. Actin was localized on the surface of fresh live ookinetes by immunofluorescence and electron microscopy using specific antibodies. The overall results indicated that enolase and actin can be located on the surface of ookinetes, and suggest that they could participate in Plasmodium invasion of the mosquito midgut.

2012 ◽  
Vol 1445 ◽  
Author(s):  
Mohammed Shahriar Zaman ◽  
Elaine D. Haberer

ABSTRACTCombinatorial phage display with a pVIII library of M13 bacteriophage was used to identify a peptide sequence capable of recognition and mineralization of copper sulfide. The six sequences isolated from the final biopanning round were rich in basic, hydrophobic, and polar amino acids compared to the phage display library. The peptide sequence, DTRAPEIV, was used to biomineralize copper sulfide on the pVIII major coat protein thus producing linear chains of nanoparticles. Electron microscopy revealed that the phage was capable of controlling the size of the nucleated nanoparticles in an aqueous solution at room temperature and that the mineralized material was copper sulfide. Phage-templated biomineralization is a low temperature, aqueous-based approach to synthesis of copper sulfide nanoparticles with hierarchical order.


2021 ◽  
Vol 241 ◽  
pp. 111347
Author(s):  
Saskia Egarter ◽  
Jorge M. Santos ◽  
Jessica Kehrer ◽  
Julia Sattler ◽  
Friedrich Frischknecht ◽  
...  

2010 ◽  
Vol 353 (1-2) ◽  
pp. 24-30 ◽  
Author(s):  
Helena Persson ◽  
Jonas Persson ◽  
Lena Danielsson ◽  
Mats Ohlin

1990 ◽  
Vol 97 (3) ◽  
pp. 539-543
Author(s):  
G. Callaini ◽  
M.G. Riparbelli

Centriole and centrosome cycles were examined by indirect immunofluorescence and electron microscopy techniques in the early Drosophila embryo. The centrosomes, which are already divided at interphase, appear as compact spheres during prophase and metaphase, expand and flatten from anaphase to telophase and split into two units in late telophase. Centriole separation starts in late metaphase, becomes evident in anaphase and increases during telophase. Procentrioles appear during the following interphase.


1999 ◽  
Vol 190 (11) ◽  
pp. 1711-1716 ◽  
Author(s):  
Masao Yuda ◽  
Hiroshi Sakaida ◽  
Yasuo Chinzei

CTRP (circumsporozoite protein and thrombospondin-related adhesive protein [TRAP]-related protein) of the rodent malaria parasite Plasmodium berghei (PbCTRP) makes up a protein family together with other apicomplexan proteins that are specifically expressed in the host-invasive stage 1. PbCTRP is produced in the mosquito-invasive, or ookinete, stage and is a protein candidate for a role in ookinete adhesion and invasion of the mosquito midgut epithelium. To demonstrate involvement of PbCTRP in the infection of the vector, we performed targeting disruption experiments with this gene. PbCTRP disruptants showed normal exflagellation rates and development into ookinetes. However, no oocyst formation was observed in the midgut after ingestion of these parasites, suggesting complete loss of their invasion ability. On the other hand, when ingested together with wild-type parasites, disruptants were able to infect mosquitoes, indicating that the PbCTRP gene of the wild-type parasite rescued infectivity of disruptants when they heterologously mated in the mosquito midgut lumen. Our results show that PbCTRP plays a crucial role in malaria infection of the mosquito midgut and suggest that similar molecular mechanisms are used by malaria parasites to invade cells in the insect vector and the mammalian host.


2019 ◽  
Vol 19 ◽  
pp. S202
Author(s):  
Theresa Weber ◽  
Ulrike Gamerdinger ◽  
Andrea Teigler-Schlegel ◽  
Sibylle Pscherer ◽  
Natalja Rutz ◽  
...  

BioTechniques ◽  
2003 ◽  
Vol 34 (1) ◽  
pp. 132-141 ◽  
Author(s):  
J.M. Jacobs ◽  
B.W. Bailey ◽  
J.B. Burritt ◽  
S.G. Morrison ◽  
R.P. Morrison ◽  
...  

2014 ◽  
Vol 82 (11) ◽  
pp. 4643-4653 ◽  
Author(s):  
Anke Harupa ◽  
Brandon K. Sack ◽  
Viswanathan Lakshmanan ◽  
Nadia Arang ◽  
Alyse N. Douglass ◽  
...  

ABSTRACTPlasmodiumsporozoites develop within oocysts in the mosquito midgut wall and then migrate to the salivary glands. After transmission, they embark on a complex journey to the mammalian liver, where they infect hepatocytes. Proteins on the sporozoite surface likely mediate multiple steps of this journey, yet only a few sporozoite surface proteins have been described. Here, we characterize a novel, conserved sporozoite surface protein (SSP3) in the rodent malaria parasitePlasmodium yoelii. SSP3 is a putative type I transmembrane protein unique toPlasmodium. By using epitope tagging and SSP3-specific antibodies in conjunction with immunofluorescence microscopy, we showed that SSP3 is expressed in mosquito midgut oocyst sporozoites, exhibiting an intracellular localization. In sporozoites derived from the mosquito salivary glands, however, SSP3 localized predominantly to the sporozoite surface as determined by immunoelectron microscopy. However, the ectodomain of SSP3 appeared to be inaccessible to antibodies in nonpermeabilized salivary gland sporozoites. Antibody-induced shedding of the major surface protein circumsporozoite protein (CSP) exposed the SSP3 ectodomain to antibodies in some sporozoites. Targeted deletion ofSSP3adversely affectedin vitrosporozoite gliding motility, which, surprisingly, impacted neither their cell traversal capacity, host cell invasionin vitro, nor infectivityin vivo. Together, these data reveal a previously unappreciated complexity of thePlasmodiumsporozoite surface proteome and the roles of surface proteins in distinct biological activities of sporozoites.


1986 ◽  
Vol 103 (3) ◽  
pp. 867-874 ◽  
Author(s):  
L D Sibley ◽  
J L Krahenbuhl ◽  
G M Adams ◽  
E Weidner

Modification of macrophage phagosomes begins shortly after formation as Toxoplasma cells secrete membranous vesicles that form a reticulate network within the vacuole. The Toxoplasma-modified compartments then resist normal endocytic processing and digestion. We have used the pronounced Ca++-dependent stability of the intraphagosomal membrane (IPM) network to purify and characterize the structural proteins of this assembly. In addition to the structural matrix, Toxoplasma secretes a discrete set of soluble proteins, including a newly described 22-kD calcium-binding protein. The IPM network adheres to intact Toxoplasma cells after host cell lysis in the presence of 1 mM Ca++; however, the network readily disperses in calcium-free buffer and was purified as vesicles that sedimented at 100,000 g. Purified IPM vesicles were specifically recognized by immune sera from mice with chronic Toxoplasma infection and consisted primarily of a 30-kD protein when analyzed by SDS PAGE. IPM network proteins share a major antigenic component located on the surface of extracellular Toxoplasma cells as shown by immunoperoxidase electron microscopy using a polyclonal antibody prepared against the IPM vesicles. Moreover, in Toxoplasma-infected macrophages, anti-IMP antibody confirmed that the extensive IPM array contains proteins also found on the Toxoplasma cell surface. Our results indicate the IMP network represents a unique structural modification of the phagosome comprised in part of Toxoplasma surface proteins.


Sign in / Sign up

Export Citation Format

Share Document