Use of a real-time PCR to explore the intensity of Plasmodium spp. infections in native, endemic and introduced New Zealand birds

Parasitology ◽  
2017 ◽  
Vol 144 (13) ◽  
pp. 1743-1751 ◽  
Author(s):  
D. C. SIJBRANDA ◽  
B. D. GARTRELL ◽  
Z. L. GRANGE ◽  
L. HOWE

SUMMARYAvian malaria, caused by Plasmodium spp., is an emerging disease in New Zealand (NZ). To detect Plasmodium spp. infection and quantify parasite load in NZ birds, a real-time polymerase chain reaction (PCR) (qPCR) protocol was used and compared with a nested PCR (nPCR) assay. A total of 202 blood samples from 14 bird species with known nPCR results were tested. The qPCR prevalences for introduced, native and endemic species groups were 70, 11 and 21%, respectively, with a sensitivity and specificity of 96·7 and 98%, respectively, for the qPCR, while a sensitivity and specificity of 80·9 and 85·4% were determined for the nPCR. The qPCR appeared to be more sensitive in detecting lower levels of parasitaemia. The mean parasite load was significantly higher in introduced bird species (2245 parasites per 10 000 erythrocytes) compared with endemic species (31·5 parasites per 10 000 erythrocytes). In NZ robins (Petroica longipes), a significantly lower packed cell volume was found in birds that were positive for Plasmodium spp. compared with birds that were negative. Our data suggest that introduced bird species, such as blackbirds (Turdus merula), have a higher tolerance for circulating parasite stages of Plasmodium spp., indicating that introduced species are an important reservoir of avian malaria due to a high infection prevalence and parasite load.

2008 ◽  
Vol 38 (4) ◽  
pp. 237-242 ◽  
Author(s):  
José G. B. Derraik ◽  
Daniel M. Tompkins ◽  
Maurice R. Alley ◽  
Peter Holder ◽  
Tara Atkinson

2016 ◽  
Vol 40 (1) ◽  
pp. 72-79 ◽  
Author(s):  
Danielle Sijbranda ◽  
◽  
Jim Campbell ◽  
Brett Gartrell ◽  
Laryssa Howe

2021 ◽  
Author(s):  
◽  
Iona Fea

<p>Introduced mammalian predators are responsible for over half of contemporary extinctions and declines of birds. Endemic bird species on islands are particularly vulnerable to invasions of mammalian predators. The native bird species that remain in New Zealand forests continue to be threatened by predation from invasive mammals, with brushtail possums (Trichosurus vulpecula) ship rats (Rattus rattus) and stoats (Mustela erminea) identified as the primary agents responsible for their ongoing decline. Extensive efforts to suppress these pests across New Zealand’s forests have created "management experiments" with potential to provide insights into the ecological forces structuring forest bird communities. To understand the effects of invasive mammals on birds, I studied responses of New Zealand bird species at different temporal and spatial scales to different intensities of control and residual densities of mammals.  In my first empirical chapter (Chapter 2), I present two meta-analyses of bird responses to invasive mammal control. I collate data from biodiversity projects across New Zealand where long-term monitoring of arboreal bird species was undertaken. The projects cover a range of treatments including fenced sanctuaries, offshore islands, forests treated periodically and sites lacking significant mammal control. I found that New Zealand bird species exhibit complex responses to the varied and sustained management effort that has occurred across New Zealand’s landscape in the last fifty years. Some species show significant positive outcomes to control, notably the larger endemic species, while others, including highly endemic species, consistently decline after control.  In Chapter 3, I estimate the responses of bird populations in the central New Zealand region to changes in ship rat densities. I collaborated with scientists from the Department of Conservation (DOC) and Greater Wellington Regional Council and collated biodiversity data from four restoration projects located across the central New Zealand region. I constructed multiple density impact functions (DIFs), where the effect of a change in density of a pest on a valued resource is quantified, to describe the impacts of ship rat population dynamics on native bird populations. These responses were then modelled in a meta-analysis to provide overall effects for bird populations when rat abundance increases. I identified two taxa that exhibit significant negative responses across the region: the native parakeet species (Cyanoramphus spp.) and the tomtit (Petroica macrocephala). Evidence from single projects also showed that two other species were negatively affected by increases in rats: the South Island kaka (Nestor meridionalis) and the North Island rifleman (Acanthisitta chloris). Conversely, populations of the recently introduced silvereye (Zosterops lateralis) were resilient to rat population recovery as silvereye counts significantly increased the year after an increase in ship rat populations was observed.  In Chapter 4, I monitored bird species through a 1080 mammal-control operation in the southern Wairarapa. This operation coincided with a heavy beech mast, an irruptive event that occurs every 2-6 years. Most likely because of the abundance of seed, suppression of ship rats and possums appeared to be short-lived, and detections of these two mammals returned to pre-control levels within one and two years, respectively. Short-term responses of native birds to the control operation were positive: initially, for the small-medium sized bird species (i.e. the bellbird (Anthornis melanura), rifleman, tomtit, and tui (Prosthemadera novaeseelandiae) with a delayed positive response of the largest species 2.5 years after control (the New Zealand pigeon (Hemiphaga novaeseelandiae).  In my final data chapter, I focus on the nesting outcomes of a common endemic species, the North Island fantail (Rhipidura fuliginosa placabilis), to different densities of ship rats. Through intensive monitoring of over 100 fantail nests, I estimated the outcomes of nesting attempts and formulated a DIF where nesting success was modelled as a function of the abundance of ship rats at the nest micro-site. Nesting attempts suffered higher failure rates at sites with higher rat abundance however, in this study I also identified a feature of nest placement that apparently limits predation from mammals. Nests placed on thinner branches were more likely to survive rat predation, a neat trick that perhaps only the smallest of birds can manage.  My thesis identifies some species as particularly vulnerable to invasive mammalian predation while others are more resilient. Understanding resilience and vulnerability in New Zealand’s bird species sheds light on historical extinctions and the processes that continue to mould New Zealand's avifauna. I quantified responses of New Zealand forest bird species, to different levels of invasive mammal management and residual densities of mammals, with consideration of climate and forest productivity. These estimates could be applied by conservation managers to more effectively gauge future threats to native avifauna according to the attributes of bird species and present and future management scenarios.</p>


1997 ◽  
Vol 11 (6) ◽  
pp. 823 ◽  
Author(s):  
David Evans Walter ◽  
Jennifer J. Beard

We revise the Australian Phytoseiinae (Acari : Mesostigmata : Phytoseiidae) based on a study of over 1000 slide-mounted specimens. Of the three currently recognised genera in the subfamily, onlyPhytoseius is known from Australia, but endemic species occur in each of its three species-groups. We describe 11 new species, including P. bunya, the first Australian representative of the purseglovei-group. The plumifer-group is represented by five species including P. danutae, sp. nov. and P. improcerus Corpuz, a Philippine mite newly reported from Australia; in addition, P. leaki Schicha is newly reported from New Zealand. In Australia, the horridus-group contains two oceanic-island species, P. hawaiiensis Prasad and P. mayottae Schicha (newly reported), and two complexes of Australasian endemics. The fotheringhamiae-complex has seven species, including three new species from tropical rainforests in far north Queensland – P. paluma,P. camelot and P. devildevil; in addition, P. fotheringhamiae is newly reported from New Zealand. The douglasensis-complex also has seven species, including six new species from Queensland and the Northern Territory: P. oreillyi, P. acaciae, P. brigalow, P. mantoni, P. darwin and P. litchfieldensis. All 22 species of Phytoseiusknown from Australia are keyed and diagnosed, and their distributions are detailed.


2021 ◽  
Author(s):  
◽  
Iona Fea

<p>Introduced mammalian predators are responsible for over half of contemporary extinctions and declines of birds. Endemic bird species on islands are particularly vulnerable to invasions of mammalian predators. The native bird species that remain in New Zealand forests continue to be threatened by predation from invasive mammals, with brushtail possums (Trichosurus vulpecula) ship rats (Rattus rattus) and stoats (Mustela erminea) identified as the primary agents responsible for their ongoing decline. Extensive efforts to suppress these pests across New Zealand’s forests have created "management experiments" with potential to provide insights into the ecological forces structuring forest bird communities. To understand the effects of invasive mammals on birds, I studied responses of New Zealand bird species at different temporal and spatial scales to different intensities of control and residual densities of mammals.  In my first empirical chapter (Chapter 2), I present two meta-analyses of bird responses to invasive mammal control. I collate data from biodiversity projects across New Zealand where long-term monitoring of arboreal bird species was undertaken. The projects cover a range of treatments including fenced sanctuaries, offshore islands, forests treated periodically and sites lacking significant mammal control. I found that New Zealand bird species exhibit complex responses to the varied and sustained management effort that has occurred across New Zealand’s landscape in the last fifty years. Some species show significant positive outcomes to control, notably the larger endemic species, while others, including highly endemic species, consistently decline after control.  In Chapter 3, I estimate the responses of bird populations in the central New Zealand region to changes in ship rat densities. I collaborated with scientists from the Department of Conservation (DOC) and Greater Wellington Regional Council and collated biodiversity data from four restoration projects located across the central New Zealand region. I constructed multiple density impact functions (DIFs), where the effect of a change in density of a pest on a valued resource is quantified, to describe the impacts of ship rat population dynamics on native bird populations. These responses were then modelled in a meta-analysis to provide overall effects for bird populations when rat abundance increases. I identified two taxa that exhibit significant negative responses across the region: the native parakeet species (Cyanoramphus spp.) and the tomtit (Petroica macrocephala). Evidence from single projects also showed that two other species were negatively affected by increases in rats: the South Island kaka (Nestor meridionalis) and the North Island rifleman (Acanthisitta chloris). Conversely, populations of the recently introduced silvereye (Zosterops lateralis) were resilient to rat population recovery as silvereye counts significantly increased the year after an increase in ship rat populations was observed.  In Chapter 4, I monitored bird species through a 1080 mammal-control operation in the southern Wairarapa. This operation coincided with a heavy beech mast, an irruptive event that occurs every 2-6 years. Most likely because of the abundance of seed, suppression of ship rats and possums appeared to be short-lived, and detections of these two mammals returned to pre-control levels within one and two years, respectively. Short-term responses of native birds to the control operation were positive: initially, for the small-medium sized bird species (i.e. the bellbird (Anthornis melanura), rifleman, tomtit, and tui (Prosthemadera novaeseelandiae) with a delayed positive response of the largest species 2.5 years after control (the New Zealand pigeon (Hemiphaga novaeseelandiae).  In my final data chapter, I focus on the nesting outcomes of a common endemic species, the North Island fantail (Rhipidura fuliginosa placabilis), to different densities of ship rats. Through intensive monitoring of over 100 fantail nests, I estimated the outcomes of nesting attempts and formulated a DIF where nesting success was modelled as a function of the abundance of ship rats at the nest micro-site. Nesting attempts suffered higher failure rates at sites with higher rat abundance however, in this study I also identified a feature of nest placement that apparently limits predation from mammals. Nests placed on thinner branches were more likely to survive rat predation, a neat trick that perhaps only the smallest of birds can manage.  My thesis identifies some species as particularly vulnerable to invasive mammalian predation while others are more resilient. Understanding resilience and vulnerability in New Zealand’s bird species sheds light on historical extinctions and the processes that continue to mould New Zealand's avifauna. I quantified responses of New Zealand forest bird species, to different levels of invasive mammal management and residual densities of mammals, with consideration of climate and forest productivity. These estimates could be applied by conservation managers to more effectively gauge future threats to native avifauna according to the attributes of bird species and present and future management scenarios.</p>


2018 ◽  
Vol 45 (2) ◽  
pp. 292-308 ◽  
Author(s):  
Rosi Crane ◽  
B. J. GILL

William Smyth, unable to get work in a New Zealand museum, ran a commercial taxidermy business at Caversham, Dunedin, from about 1873 to 1911 or 1912. His two decades of correspondence with Thomas Frederic Cheeseman at the Auckland Museum provide a case study of Smyth's professional interaction with one of New Zealand's main museums. We have used this and other sources to paint a picture of Smyth's activities and achievements during a time when there was great interest in New Zealand birds but few local taxidermists to preserve their bodies. Besides the Auckland Museum, Smyth supplied specimens to various people with museum connections, including Georg Thilenius (Germany) and Walter Lawry Buller (New Zealand). Smyth was probably self-taught, and his standards of preparation and labelling were variable, but he left a legacy for the historical documentation of New Zealand ornithology by the large number of his bird specimens that now reside in public museum collections in New Zealand and elsewhere.


2015 ◽  
Vol 53 (12) ◽  
pp. 3935-3937 ◽  
Author(s):  
Daniel Golparian ◽  
Stina Boräng ◽  
Martin Sundqvist ◽  
Magnus Unemo

The new BD Max GC real-time PCR assay showed high clinical and analytical sensitivity and specificity. It can be an effective and accurate supplementary test for the BD ProbeTec GC Qx amplified DNA assay, which had suboptimal specificity, and might also be used for initial detection ofNeisseria gonorrhoeae.


Ibis ◽  
2008 ◽  
Vol 12 (4) ◽  
pp. 455-460
Author(s):  
Walter Buller

2012 ◽  
Vol 50 (2) ◽  
pp. 239-247 ◽  
Author(s):  
Beata Biesaga ◽  
Sława Szostek ◽  
Małgorzata Klimek ◽  
Jerzy Jakubowicz ◽  
Joanna Wysocka

Sign in / Sign up

Export Citation Format

Share Document