scholarly journals Genome-wide association studies: a primer

2009 ◽  
Vol 40 (7) ◽  
pp. 1063-1077 ◽  
Author(s):  
A. Corvin ◽  
N. Craddock ◽  
P. F. Sullivan

There have been nearly 400 genome-wide association studies (GWAS) published since 2005. The GWAS approach has been exceptionally successful in identifying common genetic variants that predispose to a variety of complex human diseases and biochemical and anthropometric traits. Although this approach is relatively new, there are many excellent reviews of different aspects of the GWAS method. Here, we provide a primer, an annotated overview of the GWAS method with particular reference to psychiatric genetics. We dissect the GWAS methodology into its components and provide a brief description with citations and links to reviews that cover the topic in detail.

2012 ◽  
Vol 91 (7) ◽  
pp. 637-641 ◽  
Author(s):  
J.R. Shaffer ◽  
E. Feingold ◽  
M.L. Marazita

The genomic era of biomedical research has given rise to the genome-wide association study (GWAS) approach, which attempts to discover novel genes affecting an outcome by testing a large number ( i.e., hundreds of thousands to millions) of genetic variants for association. This article discusses the issues surrounding the GWAS approach with emphasis on the prospects and challenges relevant to the oral health research community.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2011 ◽  
Vol 40 (D1) ◽  
pp. D1047-D1054 ◽  
Author(s):  
Mulin Jun Li ◽  
Panwen Wang ◽  
Xiaorong Liu ◽  
Ee Lyn Lim ◽  
Zhangyong Wang ◽  
...  

2018 ◽  
pp. 57-69 ◽  
Author(s):  
Till F. M. Andlauer ◽  
Bertram Müller-Myhsok ◽  
Stephan Ripke

Over more than the last decade, hypothesis-free genome-wide association studies (GWAS) have been widely used to detect genetic factors influencing phenotypes of interest. The basic principle of GWAS has been unchanged since the beginning: a series of univariate tests is conducted on all genetic variants available across the genome. We present study designs and commonly used methods for genome-wide studies, with a focus on the analysis of common variants. The basic concepts required for an application of GWAS in psychiatric genetics are introduced, from power calculation to meta-analysis. This chapter will help the reader in gaining the knowledge required for participation in and realization of GWAS of both qualitative and quantitative traits.


2015 ◽  
Vol 44 (D1) ◽  
pp. D869-D876 ◽  
Author(s):  
Mulin Jun Li ◽  
Zipeng Liu ◽  
Panwen Wang ◽  
Maria P. Wong ◽  
Matthew R. Nelson ◽  
...  

Author(s):  
Yun Li ◽  
George T. O’Connor ◽  
Josée Dupuis ◽  
Eric Kolaczyk

AbstractIn genome-wide association studies (GWAS), it is of interest to identify genetic variants associated with phenotypes. For a given phenotype, the associated genetic variants are usually a sparse subset of all possible variants. Traditional Lasso-type estimation methods can therefore be used to detect important genes. But the relationship between genotypes at one variant and a phenotype may be influenced by other variables, such as sex and life style. Hence it is important to be able to incorporate gene-covariate interactions into the sparse regression model. In addition, because there is biological knowledge on the manner in which genes work together in structured groups, it is desirable to incorporate this information as well. In this paper, we present a novel sparse regression methodology for gene-covariate models in association studies that not only allows such interactions but also considers biological group structure. Simulation results show that our method substantially outperforms another method, in which interaction is considered, but group structure is ignored. Application to data on total plasma immunoglobulin E (IgE) concentrations in the Framingham Heart Study (FHS), using sex and smoking status as covariates, yields several potentially interesting gene-covariate interactions.


Neurology ◽  
2020 ◽  
Vol 95 (24) ◽  
pp. e3331-e3343 ◽  
Author(s):  
Maria J. Knol ◽  
Dongwei Lu ◽  
Matthew Traylor ◽  
Hieab H.H. Adams ◽  
José Rafael J. Romero ◽  
...  

ObjectiveTo identify common genetic variants associated with the presence of brain microbleeds (BMBs).MethodsWe performed genome-wide association studies in 11 population-based cohort studies and 3 case–control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of APOE ε2 and ε4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs.ResultsBMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the APOE region reached genome-wide significance for its association with BMB (lead single nucleotide polymorphism rs769449; odds ratio [OR]any BMB [95% confidence interval (CI)] 1.33 [1.21–1.45]; p = 2.5 × 10−10). APOE ε4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19–1.50]; p = 1.0 × 10−6) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86–1.25]; p = 0.68). APOE ε2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB.ConclusionsGenetic variants in the APOE region are associated with the presence of BMB, most likely due to the APOE ε4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Oguri ◽  
K Kato ◽  
H Horibe ◽  
T Fujimaki ◽  
J Sakuma ◽  
...  

Abstract Background Early-onset coronary artery disease (CAD) has a strong genetic component. Although genome-wide association studies have identified various genes and loci significantly associated with CAD mainly in European ancestry populations, genetic variants that contribute to susceptibility to this condition in Japanese individuals remain to be identified definitively. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to early-onset CAD in Japanese. We have now performed exome-wide association studies (EWASs) in subjects with early-onset CAD and controls. Methods A total of 7256 individuals aged ≤65 years was enrolled in the study. The EWAS was conducted with 1482 subjects with CAD and 5774 controls. Genotyping of single nucleotide polymorphisms (SNPs) was performed with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of allele frequencies for 31,465 SNPs that passed quality control to CAD was examined with Fisher's exact test. To compensate for multiple comparisons of allele frequencies with CAD, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. Results The relation of allele frequencies for 31,465 SNPs to CAD with the use of Fisher's exact test showed that 170 SNPs were significantly (FDR <0.05) associated with CAD. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension, diabetes mellitus, and dyslipidemia revealed that 162 SNPs were significantly (P<0.05) related to CAD. A stepwise forward selection procedure was performed to examine the effects of genotypes for the 162 SNPs on CAD. The 54 SNPs were significant (P<0.05) and independent [coefficient of determination (R2), 0.0008 to 0.0297] determinants of CAD. These SNPs together accounted for 15.5% of the cause of CAD. After examination of results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, we newly identified 21 genes (RNF2, YEATS2, USP45, ITGB8, TNS3, FAM170B-AS1, PRKG1, BTRC, MKI67, STIM1, OR52E4, KIAA1551, MON2, PLUT, LINC00354, TRPM1, ADAT1, KRT27, LIPE, GFY, EIF3L) and five chromosomal regions (2p13, 4q31.2, 5q12, 13q34, 20q13.2) that were significantly associated with CAD. Gene ontology analysis showed that various biological functions were predicted in the 18 genes identified in the present study. The network analysis revealed that the 18 genes had potential direct or indirect interactions with the 30 genes previously shown to be associated with CAD or with the 228 genes identified in previous genome-wide association studies of CAD. Conclusion We have newly identified 26 loci that confer susceptibility to CAD. Determination of genotypes for the SNPs at these loci may prove informative for assessment of the genetic risk for CAD in Japanese.


Sign in / Sign up

Export Citation Format

Share Document