P708Identification of 26 novel loci that confer susceptibility to early-onset coronary artery disease in a Japanese population

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Oguri ◽  
K Kato ◽  
H Horibe ◽  
T Fujimaki ◽  
J Sakuma ◽  
...  

Abstract Background Early-onset coronary artery disease (CAD) has a strong genetic component. Although genome-wide association studies have identified various genes and loci significantly associated with CAD mainly in European ancestry populations, genetic variants that contribute to susceptibility to this condition in Japanese individuals remain to be identified definitively. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to early-onset CAD in Japanese. We have now performed exome-wide association studies (EWASs) in subjects with early-onset CAD and controls. Methods A total of 7256 individuals aged ≤65 years was enrolled in the study. The EWAS was conducted with 1482 subjects with CAD and 5774 controls. Genotyping of single nucleotide polymorphisms (SNPs) was performed with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of allele frequencies for 31,465 SNPs that passed quality control to CAD was examined with Fisher's exact test. To compensate for multiple comparisons of allele frequencies with CAD, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. Results The relation of allele frequencies for 31,465 SNPs to CAD with the use of Fisher's exact test showed that 170 SNPs were significantly (FDR <0.05) associated with CAD. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension, diabetes mellitus, and dyslipidemia revealed that 162 SNPs were significantly (P<0.05) related to CAD. A stepwise forward selection procedure was performed to examine the effects of genotypes for the 162 SNPs on CAD. The 54 SNPs were significant (P<0.05) and independent [coefficient of determination (R2), 0.0008 to 0.0297] determinants of CAD. These SNPs together accounted for 15.5% of the cause of CAD. After examination of results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, we newly identified 21 genes (RNF2, YEATS2, USP45, ITGB8, TNS3, FAM170B-AS1, PRKG1, BTRC, MKI67, STIM1, OR52E4, KIAA1551, MON2, PLUT, LINC00354, TRPM1, ADAT1, KRT27, LIPE, GFY, EIF3L) and five chromosomal regions (2p13, 4q31.2, 5q12, 13q34, 20q13.2) that were significantly associated with CAD. Gene ontology analysis showed that various biological functions were predicted in the 18 genes identified in the present study. The network analysis revealed that the 18 genes had potential direct or indirect interactions with the 30 genes previously shown to be associated with CAD or with the 228 genes identified in previous genome-wide association studies of CAD. Conclusion We have newly identified 26 loci that confer susceptibility to CAD. Determination of genotypes for the SNPs at these loci may prove informative for assessment of the genetic risk for CAD in Japanese.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
Y Yamase ◽  
H Horibe ◽  
K Kato ◽  
M Oguri ◽  
T Fujimaki ◽  
...  

Abstract Background Given that substantial genetic components have been shown in ischemic stroke, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), a heritability may be higher in early-onset than late-onset individuals with these conditions. Although genome-wide association studies have identified various genes and loci significantly associated with ischemic stroke, ICH, or intracranial aneurysm mainly in European ancestry populations, genetic variants that contribute to susceptibility to these disorders in Japanese individuals remain to be identified definitively. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to ischemic stroke, ICH, or SAH in Japanese. We have now performed exome-wide association studies (EWASs) in early-onset subjects with these conditions and corresponding controls. Methods A total of 6649 individuals aged ≤65 years were examined. For the EWAS of ischemic or hemorrhagic stroke, 6224 individuals (450 subjects with ischemic stroke, 5774 controls) or 6179 individuals (261 subjects with ICH, 176 subjects with SAH, 5742 controls), respectively, were examined. EWASs were performed with the use of Illumina Human Exome-12 v1.2 DNA Analysis BeadChip or Infinium Exome-24 v1.0 BeadChip. To compensate for multiple comparisons of allele frequencies with ischemic stroke, ICH, or SAH, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. Results The relation of allele frequencies of 31,245 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic stroke was examined with Fisher's exact test, and 31 SNPs were significantly (FDR <0.05) associated with ischemic stroke. The relation of allele frequencies of 31,253 or 30,970 SNPs to ICH or SAH, respectively, was examined with Fisher's exact test, and six or two SNPs were significantly (FDR <0.05) associated with ICH or SAH, respectively. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension and diabetes mellitus revealed that 12 SNPs were significantly [P <0.0004 (Bonferroni's correction, 0.05/124)] related to ischemic stroke. Similar analysis with adjustment for age, sex, and the prevalence of hypertension revealed that six or two SNPs were significantly [P <0.0016 (0.05/32)] related to ICH or SAH, respectively. After examination of linkage disequilibrium of identified SNPs and results of previous genome-wide association studies, we have newly identified HHIPL2, CTNNA3, LOC643770, UTP20, and TRIB3 as susceptibility loci for ischemic stroke, DNTTIP2 and FAM205A as susceptibility loci for ICH, and FAM160A1 and OR52E4 as such loci for SAH. Conclusion We have thus newly identified nine genes that confer susceptibility to early-onset ischemic stroke, ICH, or SAH. Determination of genotypes for the SNPs in these genes may prove informative for assessment of the genetic risk for ischemic stroke, ICH, or SAH in Japanese.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Naomi Ogawa ◽  
Yasushi Imai ◽  
Hiroyuki Morita ◽  
Ryozo Nagai

Coronary artery disease (CAD) is a multifactorial disease with environmental and genetic determinants. The genetic determinants of CAD have previously been explored by the candidate gene approach. Recently, the data from the International HapMap Project and the development of dense genotyping chips have enabled us to perform genome-wide association studies (GWAS) on a large number of subjects without bias towards any particular candidate genes. In 2007, three chip-based GWAS simultaneously revealed the significant association between common variants on chromosome 9p21 and CAD. This association was replicated among other ethnic groups and also in a meta-analysis. Further investigations have detected several other candidate loci associated with CAD. The chip-based GWAS approach has identified novel and unbiased genetic determinants of CAD and these insights provide the important direction to better understand the pathogenesis of CAD and to develop new and improved preventive measures and treatments for CAD.


2019 ◽  
Vol 19 (10) ◽  
pp. 731-738
Author(s):  
Xingchen Wang ◽  
Xingbo Mo ◽  
Huan Zhang ◽  
Yonghong Zhang ◽  
Yueping Shen

Purpose: Phosphorylation-related SNP (phosSNP) is a non-synonymous SNP that might influence protein phosphorylation status. The aim of this study was to assess the effect of phosSNPs on blood pressure (BP), coronary artery disease (CAD) and ischemic stroke (IS). Methods: We examined the association of phosSNPs with BP, CAD and IS in shared data from genome-wide association studies (GWAS) and tested if the disease loci were enriched with phosSNPs. Furthermore, we performed quantitative trait locus analysis to find out if the identified phosSNPs have impacts on gene expression, protein and metabolite levels. Results: We found numerous phosSNPs for systolic BP (count=148), diastolic BP (count=206), CAD (count=20) and IS (count=4). The most significant phosSNPs for SBP, DBP, CAD and IS were rs1801131 in MTHFR, rs3184504 in SH2B3, rs35212307 in WDR12 and rs3184504 in SH2B3, respectively. Our analyses revealed that the associated SNPs identified by the original GWAS were significantly enriched with phosSNPs and many well-known genes predisposing to cardiovascular diseases contain significant phosSNPs. We found that BP, CAD and IS shared for phosSNPs in loci that contain functional genes involve in cardiovascular diseases, e.g., rs11556924 (ZC3HC1), rs1971819 (ICA1L), rs3184504 (SH2B3), rs3739998 (JCAD), rs903160 (SMG6). Four phosSNPs in ADAMTS7 were significantly associated with CAD, including the known functional SNP rs3825807. Moreover, the identified phosSNPs seemed to have the potential to affect transcription regulation and serum levels of numerous cardiovascular diseases-related proteins and metabolites. Conclusion: The findings suggested that phosSNPs may play important roles in BP regulation and the pathological mechanisms of CAD and IS.


Author(s):  
Örjan Åkerborg ◽  
Rapolas Spalinskas ◽  
Sailendra Pradhananga ◽  
Anandashankar Anil ◽  
Pontus Höjer ◽  
...  

Background: Genetic variant landscape of coronary artery disease is dominated by noncoding variants among which many occur within putative enhancers regulating the expression levels of relevant genes. It is crucial to assign the genetic variants to their correct genes both to gain insights into perturbed functions and better assess the risk of disease. Methods: In this study, we generated high-resolution genomic interaction maps (≈750 bases) in aortic endothelial, smooth muscle cells and THP-1 (human leukemia monocytic cell line) macrophages stimulated with lipopolysaccharide using Hi-C coupled with sequence capture targeting 25 429 features, including variants associated with coronary artery disease. We also sequenced their transcriptomes and mapped putative enhancers using chromatin immunoprecipitation with an antibody against H3K27Ac. Results: The regions interacting with promoters showed strong enrichment for enhancer elements and validated several previously known interactions and enhancers. We detected interactions for 727 risk variants obtained by genome-wide association studies and identified novel, as well as established genes and functions associated with cardiovascular diseases. We were able to assign potential target genes for additional 398 genome-wide association studies variants using haplotype information, thereby identifying additional relevant genes and functions. Importantly, we discovered that a subset of risk variants interact with multiple promoters and their expression levels were strongly correlated. Conclusions: In summary, we present a catalog of candidate genes regulated by coronary artery disease–related variants and think that it will be an invaluable resource to further the investigation of cardiovascular pathologies and disease.


2019 ◽  
Vol 39 (10) ◽  
pp. 1925-1937 ◽  
Author(s):  
Ruth McPherson

Recent studies have led to a broader understanding of the genetic architecture of coronary artery disease and demonstrate that it largely derives from the cumulative effect of multiple common risk alleles individually of small effect size rather than rare variants with large effects on coronary artery disease risk. The tools applied include genome-wide association studies encompassing over 200 000 individuals complemented by bioinformatic approaches including imputation from whole-genome data sets, expression quantitative trait loci analyses, and interrogation of ENCODE (Encyclopedia of DNA Elements), Roadmap Epigenetic Project, and other data sets. Over 160 genome-wide significant loci associated with coronary artery disease risk have been identified using the genome-wide association studies approach, 90% of which are situated in intergenic regions. Here, I will describe, in part, our research over the last decade performed in collaboration with a series of bright trainees and an extensive number of groups and individuals around the world as it applies to our understanding of the genetic basis of this complex disease. These studies include computational approaches to better understand missing heritability and identify causal pathways, experimental approaches, and progress in understanding at the molecular level the function of the multiple risk loci identified and potential applications of these genomic data in clinical medicine and drug discovery.


2012 ◽  
Vol 225 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Bram P. Prins ◽  
Vasiliki Lagou ◽  
Folkert W. Asselbergs ◽  
Harold Snieder ◽  
Jingyuan Fu

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 440
Author(s):  
Carina Mauersberger ◽  
Heribert Schunkert ◽  
Hendrik B. Sager

Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.


Sign in / Sign up

Export Citation Format

Share Document