scholarly journals Technological Advances in the University of Washington Accelerator Mass Spectrometry System

Radiocarbon ◽  
1983 ◽  
Vol 25 (2) ◽  
pp. 755-760 ◽  
Author(s):  
G W Farwell ◽  
P M Grootes ◽  
D D Leach ◽  
F H Schmidt

During the past year we have continued to work toward greater stability and flexibility in nearly all elements of our accelerator mass spectrometry (AMS) system, which is based upon an FN tandem Van de Graaff accelerator, and have carried out measurements of 14C/12C and 10Be/9Be isotopic abundance ratios in natural samples. The principal recent developments and improvements in the accelerator system and in our sample preparation techniques for carbon and beryllium are discussed, and the results of a study of 10Be cross-contamination of beryllium samples in the sputter ion source are presented.

Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 711-716 ◽  
Author(s):  
Christopher Bronk Ramsey ◽  
R. E. M. Hedges

In 14C tracer studies, and when looking for modern contamination in archaeological samples, it is often necessary to measure the 14C concentration of individual chemical fractions. Gas chromatography (GC) is one method that is frequently used for separation of chemical fractions. The gas ion source at the Oxford Radiocarbon Accelerator Unit for accelerator mass spectrometry (AMS) provides the opportunity to measure fractions from a GC instrument directly. Although the first investigations are likely to be 14C tracer studies, such a GC-AMS system could find much wider application. We present results from a pilot study of the peak sensitivity, baseline stability and crosstalk of the accelerator system used in this way. We also discuss the practical considerations in developing a GC-AMS instrument for routine use.


Radiocarbon ◽  
2007 ◽  
Vol 49 (3) ◽  
pp. 1395-1402 ◽  
Author(s):  
M Youn ◽  
Y M Song ◽  
J Kang ◽  
J C Kim ◽  
M K Cheoun

The accelerator mass spectrometry (AMS) facility at Seoul National University (SNU-AMS) was accepted in December 1998 and results reported first at the Vienna AMS conference in October 1999 and at the 17th Radiocarbon Conference in Israel, June 2000. At the Vienna conference, we reported our accelerator system and sample preparation systems (Kim et al. 2000). Recent developments of the AMS facility have been regularly reported at AMS conferences (Kim et al. 2001, 2004, 2007). Meanwhile, about 1000 unknown archaeological, geological, and environmental samples have been measured every year. In this report, the archaeological and geological data carried out in 2002 are presented in terms of years BP (before present, AD 1950), following the SNU-AMS date lists I and II published in Radiocarbon (Kim et al. 2006a,b).


Radiocarbon ◽  
2007 ◽  
Vol 49 (3) ◽  
pp. 1387-1394 ◽  
Author(s):  
M Youn ◽  
Y M Song ◽  
J Kang ◽  
J C Kim ◽  
M K Cheoun

The accelerator mass spectrometry (AMS) facility at Seoul National University (SNU-AMS) was accepted in December 1998 and results reported first at the Vienna AMS conference in October 1999 and at the 17th Radiocarbon Conference in Israel, June 2000. At the Vienna conference, we reported our accelerator system and sample preparation systems (Kim et al. 2000). Recent developments of the AMS facility have been regularly reported at AMS conferences (Kim et al. 2001, 2004, 2007). Meanwhile, about 1000 unknown archaeological, geological, and environmental samples have been measured every year. In this report, the archaeological and geological data carried out in 2001 are presented in terms of years BP (before present, AD 1950), following the SNU-AMS date lists I and II published in Radiocarbon (Kim et al. 2006a,b).


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 295-300 ◽  
Author(s):  
Cameron P McIntyre ◽  
Ernst Galutschek ◽  
Mark L Roberts ◽  
Karl F von Reden ◽  
Ann P McNichol ◽  
...  

Gas-accepting ion sources for radiocarbon accelerator mass spectrometry (AMS) have permitted the direct analysis of CO2 gas, eliminating the need to graphitize samples. As a result, a variety of analytical instruments can be interfaced to an AMS system, processing time is decreased, and smaller samples can be analyzed (albeit with lower precision). We have coupled a gas chromatograph to a compact 14C AMS system fitted with a microwave ion source for real-time compound-specific 14C analysis. As an initial test of the system, we have analyzed a sample of fatty acid methyl esters and biodiesel. Peak shape and memory was better then existing systems fitted with a hybrid ion source while precision was comparable. 14C/12C ratios of individual components at natural abundance levels were consistent with those determined by conventional methods. Continuing refinements to the ion source are expected to improve the performance and scope of the instrument.


Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 33-39 ◽  
Author(s):  
J R Southon ◽  
G M Santos

The Keck Carbon Cycle accelerator mass spectrometry facility at the University of California, Irvine, operates a National Electronics Corporation 40-sample MC-SNICS ion source. We describe modifications that have increased beam current output, improved reliability, and made the source easier to service.


Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


2011 ◽  
Author(s):  
W. E. Kieser ◽  
X.-L. Zhao ◽  
I. D. Clark ◽  
T. Kotzer ◽  
A. E. Litherland ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yalan Xu ◽  
Xiuyue Song ◽  
Dong Wang ◽  
Yin Wang ◽  
Peifeng Li ◽  
...  

AbstractChemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.


Sign in / Sign up

Export Citation Format

Share Document