scholarly journals 14C Analyses of Groundwater From the Botucatu Aquifer System in Brazil

Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 926-933 ◽  
Author(s):  
Annkarin Aurelia ◽  
Kimmelmann E Silva ◽  
Aldo da Cunha Rebouças ◽  
Maria Marlucia ◽  
Freitas Santiago

Measurements of 14C activity as well as determinations of the stable isotope composition (18O, 2H and 13C) of groundwater samples were made to investigate the flow path, origin, recharge and age of the Botucatu Aquifer System in Brazil, between 1984 and 1987. The stable oxygen isotope composition reflects infiltration during several climatic recharge conditions. Measured 14C activities range from 0.4 to 94.2% modern. δ13C values enable us to distinguish two groundwater types of different origins. There is a gradual increase of 14C ages from the outcrop area towards the central part of the basin, associated with a progression of the confining conditions. Anomalous fluoride contents seem to be correlated with high 14C ages of the groundwater. The reliability of the 14C data is discussed.

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3464
Author(s):  
Gabriella Boretto ◽  
Giovanni Zanchetta ◽  
Ilaria Consoloni ◽  
Ilaria Baneschi ◽  
Massimo Guidi ◽  
...  

The stable isotope composition of living and of Holocene Mytilidae shells was measured in the area of Camarones (Chubut, Argentina). The most striking results were the high δ18O values measured in samples older than ca. 6.1 cal ka BP. In the younger samples, the δ18O values remained substantially stable and similar to those of living specimens. Analysis of the data revealed the possibility for this isotopic shift to be driven mainly by changes in temperature probably accompanied by minor changes in salinity, suggesting cooler seawater before 6.1 cal ka BP, with a maximum possible temperature shift of ca. 5 °C. A possible explanation of this change can be related to a northward position of the confluence zone of the Falkland and Brazilian currents. This is consistent with the data obtained in marine cores, which indicate a northerly position of the confluence in the first half of the Holocene. Our data are also in line with the changes in wind strength and position of the Southern Westerlies Wind, as reconstructed in terrestrial proxies from the Southernmost Patagonia region.


2014 ◽  
Vol 522-524 ◽  
pp. 954-957 ◽  
Author(s):  
Yong Sen Wang ◽  
Zheng He Xu ◽  
Si Fang Dong

The stable isotope composition of river water contains some information of water cycle and climatic factors, such as precipitation, evaporation and temperature. Oxygen isotopes in river water were monitored at one site in Jinxiuchuang basin of Jinan southern mountain.δ18O values of river water show a variation from-7.82 on July 6 to-9.98 on June 6. The result reveals that the river water was mainly supplied by the precipitation. The isotopic variations at Jinxiuchuan river have strong precipitation patterns owning to different rainfall in summer.


2017 ◽  
Vol 454 ◽  
pp. 25-37 ◽  
Author(s):  
Sen Yang ◽  
Mingjun Zhang ◽  
Shengjie Wang ◽  
Yangmin Liu ◽  
Fang Qiang ◽  
...  

2020 ◽  
Author(s):  
Manuel F. G. Weinkauf ◽  
Jeroen Groeneveld ◽  
Joanna Waniek ◽  
Torsten Vennemann ◽  
Martini Rossana

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Cueni ◽  
Daniel B. Nelson ◽  
Markus Boner ◽  
Ansgar Kahmen

AbstractFraudulent food products, especially regarding false claims of geographic origin, impose economic damages of $30–$40 billion per year. Stable isotope methods, using oxygen isotopes (δ18O) in particular, are the leading forensic tools for identifying these crimes. Plant physiological stable oxygen isotope models simulate how precipitation δ18O values and climatic variables shape the δ18O values of water and organic compounds in plants. These models have the potential to simplify, speed up, and improve conventional stable isotope applications and produce temporally resolved, accurate, and precise region-of-origin assignments for agricultural food products. However, the validation of these models and thus the best choice of model parameters and input variables have limited the application of the models for the origin identification of food. In our study we test model predictions against a unique 11-year European strawberry δ18O reference dataset to evaluate how choices of input variable sources and model parameterization impact the prediction skill of the model. Our results show that modifying leaf-based model parameters specifically for fruit and with product-independent, but growth time specific environmental input data, plant physiological isotope models offer a new and dynamic method that can accurately predict the geographic origin of a plant product and can advance the field of stable isotope analysis to counter food fraud.


2020 ◽  
Author(s):  
Jens Fohlmeister ◽  
Niklas Bores ◽  
Norbert Marwan ◽  
Andrea Columbu ◽  
Kira Rehfeld ◽  
...  

<p>Millennial scale climate variations called Dansgaard-Oeschger cycles occurred frequently during the last glacial, with their central impact on climate in the North Atlantic region. These events are, for example, well captured by the stable oxygen isotope composition in continental ice from Greenland, but also in records from other regions. Recently, it has been shown that a water isotope enabled general circulation model is able to reproduce those millennial-scale oxygen isotope changes from Greenland (Sime et al., 2019). On a global scale, this isotope-enabled model has not been tested in its performance, as stable oxygen isotope records covering those millennial scale variability were so far missing or not systematically compiled.</p><p>In the continental realm, speleothems provide an excellent archive to store the oxygen isotope composition in precipitation during those rapid events. Here, we use a newly established speleothem data base (SISAL, Atsawawaranunt et al., 2018) from which we extracted 126 speleothems, growing in some interval during the last glacial period. We established an automated method for identification of the rapid onsets of interstadials. While the applied method seems to be not sensitive enough to capture all warming events due to the diverse characteristics of speleothem data (temporal resolution, growth stops and dating uncertainties) and low signal-to-noise-ratio, we are confident that our method is not detecting variations in stable oxygen isotopes that do not reflect stadial-interstadial transitions. Finally, all found transitions were stacked for individual speleothem records in order to provide a mean stadial-interstadial transition for various continental locations. This data set could be useful for future comparison of isotope enabled model simulations and corresponding observations, and to test their ability in modelling millennial scale variability.</p><p> </p><p>References</p><p>Atsawawaranunt, et al. (2018). The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth System Science Data 10, 1687–1713</p><p>Sime, L. C., Hopcroft, P. O., Rhodes, R. H. (2019). Impact of abrupt sea ice loss on Greenland water isotopes during the last glacial period. PNAS 116, 4099-4104.</p>


Sign in / Sign up

Export Citation Format

Share Document