scholarly journals New Radiocarbon Dates for the Reed Mat from the Cave of the Treasure, Israel

Radiocarbon ◽  
2001 ◽  
Vol 43 (3) ◽  
pp. 1247-1254 ◽  
Author(s):  
Gerald E Aardsma

Modern radiocarbon dates were procured for the Cave of the Treasure, Israel reed mat at the University of Arizona accelerator mass spectrometry (AMS) laboratory in late 1999 and early 2000. Three samples from various locations on the mat were dated. One of these samples was dated twice, and another was dated three times, yielding a total of six new radiocarbon dates on the mat. The new 14C dates overturn expectations of a late Chalcolithic, roughly 3500 BC, date for the origin of the mat. It is suggested that the mat may not have been of common use but may rather have been a religious heirloom with a history stretching back into the early Chalcolithic.

Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


2011 ◽  
Author(s):  
W. E. Kieser ◽  
X.-L. Zhao ◽  
I. D. Clark ◽  
T. Kotzer ◽  
A. E. Litherland ◽  
...  

Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Khaled Al-Bashaireh

This article presents accelerator mass spectrometry (AMS) radiocarbon dates of organic inclusions of cement materials from the House XVII-XVIII Complex located in the Umm el-Jimal archaeological site, east Jordan, aiming at refining the unclear chronology of the house. Fine straws and small fragments of charcoal uncovered from preserved architectural lime mortars and plasters were dated without carrying out extensive excavations. The results indicate that the house most probably was initially plastered or built during the middle of the Byzantine period. The results agree with the historical and archaeological data indicating that Umm el-Jimal flourished during this period; therefore, it is probable that the house was established during this time to meet the housing demand for the increased number of its population.


Author(s):  
Seiji Hosoya ◽  
Kimikazu Sasa ◽  
Tsutomu Takahashi ◽  
Tetsuya Matsunaka ◽  
Masumi Matsumura ◽  
...  

Radiocarbon ◽  
1999 ◽  
Vol 41 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Nancy Beavan Athfield ◽  
Bruce McFadgen ◽  
Rodger Sparks

A suite of 6 bone gelatin accelerator mass spectrometry (AMS) radiocarbon dates for Rattus exulans Peale and associated beta decay 14C dates for Austrovenus stutchburyi shell are presented for 4 middens at Pauatahanui, Wellington, New Zealand. Mean calibrated age ranges of Rattus exulans (520–435 BP and 350–330 BP at 95% confidence level) and shell (465–375 BP at 95% confidence level) from the 4 midden sites overlap. The agreement between Rattus exulans bone gelatin dates and associated shell provides an inter-sample comparison of 14C dating using both gas counting (beta decay) and AMS dating techniques. We examine the adequacy of the standard gelatinization treatment for bone samples, which has been employed consistently at the laboratory since 1995.


Radiocarbon ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. iii-iii
Author(s):  
Ajt Jull ◽  
Hans E Suess

Timothy Weiler Linick died on June 4th, 1989. He was a dedicated researcher, and an important part of the NSF Accelerator Facility for Radioisotope Analysis at the University of Arizona. He will be remembered for his care and attention to details, especially in the calculation and reporting of radiocarbon dates. He made important contributions to the fields of oceanography and tree-ring calibration of the 14C time scale.


Radiocarbon ◽  
2009 ◽  
Vol 51 (3) ◽  
pp. 977-986 ◽  
Author(s):  
Christopher M Wurster ◽  
Michael I Bird ◽  
Ian Bull ◽  
Charlotte Bryant ◽  
Philippa Ascough

We present accelerator mass spectrometry (AMS) radiocarbon dates on several organic fractions isolated from tropical guano deposits recovered from insular Southeast Asia. Differences were observed between 14C measurements made on bulk guano as well as bulk lipids, the saturated hydrocarbon fraction, solvent-extracted guano, and insect cuticles extracted from the same bulk sample. We infer that 14C dates from the bulk lipid fraction and saturated hydrocarbon fractions can be variably contaminated by exogenous carbon. In contrast, 14C measurements on solvent-extracted guano and isolated insect cuticles appear to yield the most robust age determinations.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 569-577 ◽  
Author(s):  
Alexander Cherkinsky ◽  
Christine Chataigner

Prehistoric cultures in Armenia are still poorly known; thus, accelerator mass spectrometry (AMS) radiocarbon dates are invaluable in constructing an accurate chronology. Bone samples have been collected from sites representing the Middle Paleolithic, Chalcolithic, and Early Bronze periods. Most of the bone samples are poorly preserved. We describe the separation technique for the extraction of both the bioapatite and collagen fractions. In many cases where the bone had very low organic material content, the collagen fractions yielded a younger age, although the ages of bioapatite fractions were found to be in good agreement with associated archaeological artifacts. In cases where bone was well preserved, both fractions exhibited ages in good agreement with the artifacts. The accuracy of 14C dating of bone material always depends on its degree of preservation, and each case should be carefully evaluated to determine which fraction is less contaminated in order to accurately date a burial event.


Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 243-263 ◽  
Author(s):  
Andrey V Poliakov ◽  
Svetlana V Svyatko ◽  
Nadezhda F Stepanova

ABSTRACTThis article provides a summary and in-depth analysis of all existing radiocarbon (14C) dates for the Afanasyevo Culture of the Paleometal period. The previous “long” chronology of the culture was widely criticized and contradicted many archaeological observations. The exceedingly wide ranges of the liquid scintillation counting (LSC) dates from bone samples produced in several laboratories and the systematically older ages for the wood/charcoal samples finally reveal the shortcomings of the conventional “long” chronology. From accelerator mass spectrometry (AMS), the Afanasyevo burials of the Altai are dated to the 31st–29th century BC, whereas those of the Middle Yenisei Region to the 29th–25th century BC, which confirms the relatively earlier age of the Altai monuments. The “short” chronology removes the incompatibility of deriving the Afanasyevo Culture from the Yamnaya Culture, which previously appeared “younger” than the Afanasyevo, and also contradictions with the archaeological data. It also explains the small number of sites, the small size of the cemeteries and the lack of the internal periodization. We can now clearly move, from the earlier understanding that the Afanasyevo chronology is too broad, towards a different perception. The new AMS dates only represent a “core” for the Afanasyevo chronology, which cannot be narrowed down, but could be slightly expanded over time.


Sign in / Sign up

Export Citation Format

Share Document