Reconstructing the Chronology of the House XVII-XVIII Complex at Umm el-Jimal, East Jordan: Radiocarbon Dates of Organic Inclusions of Architectural Mortars

Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Khaled Al-Bashaireh

This article presents accelerator mass spectrometry (AMS) radiocarbon dates of organic inclusions of cement materials from the House XVII-XVIII Complex located in the Umm el-Jimal archaeological site, east Jordan, aiming at refining the unclear chronology of the house. Fine straws and small fragments of charcoal uncovered from preserved architectural lime mortars and plasters were dated without carrying out extensive excavations. The results indicate that the house most probably was initially plastered or built during the middle of the Byzantine period. The results agree with the historical and archaeological data indicating that Umm el-Jimal flourished during this period; therefore, it is probable that the house was established during this time to meet the housing demand for the increased number of its population.

Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 243-263 ◽  
Author(s):  
Andrey V Poliakov ◽  
Svetlana V Svyatko ◽  
Nadezhda F Stepanova

ABSTRACTThis article provides a summary and in-depth analysis of all existing radiocarbon (14C) dates for the Afanasyevo Culture of the Paleometal period. The previous “long” chronology of the culture was widely criticized and contradicted many archaeological observations. The exceedingly wide ranges of the liquid scintillation counting (LSC) dates from bone samples produced in several laboratories and the systematically older ages for the wood/charcoal samples finally reveal the shortcomings of the conventional “long” chronology. From accelerator mass spectrometry (AMS), the Afanasyevo burials of the Altai are dated to the 31st–29th century BC, whereas those of the Middle Yenisei Region to the 29th–25th century BC, which confirms the relatively earlier age of the Altai monuments. The “short” chronology removes the incompatibility of deriving the Afanasyevo Culture from the Yamnaya Culture, which previously appeared “younger” than the Afanasyevo, and also contradictions with the archaeological data. It also explains the small number of sites, the small size of the cemeteries and the lack of the internal periodization. We can now clearly move, from the earlier understanding that the Afanasyevo chronology is too broad, towards a different perception. The new AMS dates only represent a “core” for the Afanasyevo chronology, which cannot be narrowed down, but could be slightly expanded over time.


Radiocarbon ◽  
2013 ◽  
Vol 55 (3) ◽  
pp. 1278-1285
Author(s):  
Vladimir A Levchenko ◽  
Flarit A Sungatov

A suite of accelerator mass spectrometry (AMS) radiocarbon dates for the Ufa-II archaeological site in Bashkortostan, Russia, is obtained for the first time. Dating was done on charcoal samples from a sequence of cultural deposits collected during the 2011 digging season. An age-depth chronology is established using the Bayesian deposition General Outlier P_Sequence model. The oldest age for the site at the horizon immediately over the sterile ground was cal AD 137–237 (68% probability), corresponding to the beginning of site occupation. The youngest 14C date found was late 6th to early 7th century cal AD for the extensive planked boardwalks unearthed at the site. The 14C dates are in good agreement with archaeological determinations based on discovered artifacts.


Radiocarbon ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 767-774 ◽  
Author(s):  
Ganna I. Zaitseva ◽  
Göran Possnert ◽  
Andrey Yu. Alekseev ◽  
Valentin A. Dergachev ◽  
Anatoly A. Sementsov

The first radiocarbon dates for the famous monuments of European Scythia were produced for the Kelermes, Seven Brothers, Solocha and Chertomlyk barrows (burial mounds) by both accelerator mass spectrometry (AMS) and conventional methods. The obtained 14C dates confirmed the traditional archaeological chronology, which was based on the analysis of written data and typological comparisons of Scythian artifacts with similar objects found in the Ancient East and Greece. The 14C dates for the European Scythian monuments are compared with the Asian ones. The 14C chronology of the European Scythian monuments shows chronological synchronisms between the Asiatic and European monuments. The calibrated ages for the investigated barrows generally agree with the archaeological data.


Radiocarbon ◽  
2016 ◽  
Vol 58 (1) ◽  
pp. 179-191 ◽  
Author(s):  
Arman Z Beisenov ◽  
Svetlana V Svyatko ◽  
Aibar Е Kassenalin ◽  
Kairat А Zhambulatov ◽  
Daniyar Duisenbai ◽  
...  

AbstractWe present the first radiocarbon dates of Early Iron Age sites of central Kazakhstan (in total, 24 dates for 16 recently excavated sites). Archaeologically, the sites have been attributed to the Tasmola culture of the Saka period and later Korgantas phase of the early Hun period. The new accelerator mass spectrometry (AMS) 14C dates suggest that the majority of analyzed Tasmola sites belong to the beginning of the 8th–5th century cal BC, while Korgantas dates to the 4th–2nd century cal BC. This corresponds with the latest archaeological data for the region; however, it is somewhat contrary to the traditional perception of the chronology of the Scythian period in central Kazakhstan. The new dates suggest the beginning of the Early Scythian period in the region in at least the late 9th or 8th century BC rather than 7th century BC according to the traditional approach.


Radiocarbon ◽  
2021 ◽  
pp. 1-19
Author(s):  
Federico Manuelli ◽  
Cristiano Vignola ◽  
Fabio Marzaioli ◽  
Isabella Passariello ◽  
Filippo Terrasi

ABSTRACT The Iron Age chronology at Arslantepe is the result of the interpretation of Luwian hieroglyphic inscriptions and archaeological data coming from the site and its surrounding region. A new round of investigations of the Iron Age levels has been conducted at the site over the last 10 years. Preliminary results allowed the combination of the archaeological sequence with the historical events that extended from the collapse of the Late Bronze Age empires to the formation and development of the new Iron Age kingdoms. The integration into this picture of a new set of radiocarbon (14C) dates is aimed at establishing a more solid local chronology. High precision 14C dating by accelerator mass spectrometry (AMS) and its correlation with archaeobotanical analysis and stratigraphic data are presented here with the purpose of improving our knowledge of the site’s history and to build a reliable absolute chronology of the Iron Age. The results show that the earliest level of the sequence dates to ca. the mid-13th century BC, implying that the site started developing a new set of relationships with the Levant already before the breakdown of the Hittite empire, entailing important historical implications for the Syro-Anatolian region at the end of the 2nd millennium BC.


2010 ◽  
Vol 23 (2) ◽  
pp. 20-39 ◽  
Author(s):  
Rafael Suárez ◽  
Guaciara M. Santos

On this paper we show records of Pleistocene fauna from the archaeological site of PayPaso 1, located near of the Quarai River. On this site we recovered two extinct species, Equus sp. (ancient horse) e Glyptodon sp. (giant armadillo), direct associated with lithic artifacts. Our results indicate that these extinct mammals lived in the beginning of the Holocene (9,600 – 9,100 years 14C BP), based on nine 14C age results obtained by AMS (Accelerator Mass Spectrometry) measurements. In this work, these results are compared with others in South America. Human adaptation, lithic technology, Pleistocene fauna extinction and climate change at the transition between Pleistocene-Holocene are also discussed.


Radiocarbon ◽  
1999 ◽  
Vol 41 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Nancy Beavan Athfield ◽  
Bruce McFadgen ◽  
Rodger Sparks

A suite of 6 bone gelatin accelerator mass spectrometry (AMS) radiocarbon dates for Rattus exulans Peale and associated beta decay 14C dates for Austrovenus stutchburyi shell are presented for 4 middens at Pauatahanui, Wellington, New Zealand. Mean calibrated age ranges of Rattus exulans (520–435 BP and 350–330 BP at 95% confidence level) and shell (465–375 BP at 95% confidence level) from the 4 midden sites overlap. The agreement between Rattus exulans bone gelatin dates and associated shell provides an inter-sample comparison of 14C dating using both gas counting (beta decay) and AMS dating techniques. We examine the adequacy of the standard gelatinization treatment for bone samples, which has been employed consistently at the laboratory since 1995.


Radiocarbon ◽  
2009 ◽  
Vol 51 (3) ◽  
pp. 977-986 ◽  
Author(s):  
Christopher M Wurster ◽  
Michael I Bird ◽  
Ian Bull ◽  
Charlotte Bryant ◽  
Philippa Ascough

We present accelerator mass spectrometry (AMS) radiocarbon dates on several organic fractions isolated from tropical guano deposits recovered from insular Southeast Asia. Differences were observed between 14C measurements made on bulk guano as well as bulk lipids, the saturated hydrocarbon fraction, solvent-extracted guano, and insect cuticles extracted from the same bulk sample. We infer that 14C dates from the bulk lipid fraction and saturated hydrocarbon fractions can be variably contaminated by exogenous carbon. In contrast, 14C measurements on solvent-extracted guano and isolated insect cuticles appear to yield the most robust age determinations.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 473-479 ◽  
Author(s):  
Hiromasa Ozaki ◽  
Mineo Imamura ◽  
Hiroyuki Matsuzaki ◽  
Takumi Mitsutani

In order to investigate the regional atmospheric radiocarbon offset, accelerator mass spectrometry (AMS) 14C measurements were made on 5-yr increments of a Japanese wood sample dendrochronologically dated to 820–436 BC. The 14C data from the Japanese tree-ring samples were compared with the IntCal04 calibration curve (Reimer et al. 2004). In most parts, the differences between IntCal04 and 14C dates in the Japanese tree-ring samples were within experimental statistical errors. At around 680 BC, however, significant differences of up to 100 14C yr were observed. These differences may indicate either regional offsets in Japan or the short-term fluctuation of a subdecadal timescale in atmospheric 14C variations.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 569-577 ◽  
Author(s):  
Alexander Cherkinsky ◽  
Christine Chataigner

Prehistoric cultures in Armenia are still poorly known; thus, accelerator mass spectrometry (AMS) radiocarbon dates are invaluable in constructing an accurate chronology. Bone samples have been collected from sites representing the Middle Paleolithic, Chalcolithic, and Early Bronze periods. Most of the bone samples are poorly preserved. We describe the separation technique for the extraction of both the bioapatite and collagen fractions. In many cases where the bone had very low organic material content, the collagen fractions yielded a younger age, although the ages of bioapatite fractions were found to be in good agreement with associated archaeological artifacts. In cases where bone was well preserved, both fractions exhibited ages in good agreement with the artifacts. The accuracy of 14C dating of bone material always depends on its degree of preservation, and each case should be carefully evaluated to determine which fraction is less contaminated in order to accurately date a burial event.


Sign in / Sign up

Export Citation Format

Share Document