scholarly journals Marine Reservoir Corrections for the Indian Ocean and Southeast Asia

Radiocarbon ◽  
2002 ◽  
Vol 44 (1) ◽  
pp. 167-180 ◽  
Author(s):  
John Southon ◽  
Michaele Kashgarian ◽  
Michel Fontugne ◽  
Bernard Metivier ◽  
Wyss W-S Yim

We have measured radiocarbon in prebomb known-age shells and coral from the Indian Ocean and southeast Asia to determine marine reservoir age corrections. Western Indian Ocean results show a strong 14C depletion due to upwelling in the Arabian Sea, and indicate that this signal is advected over a wide area to the east and south. In contrast, the surface waters of the South China Sea contain relatively high levels of 14C, due in part to the input of well-equilibrated water masses from the western Pacific. The easternmost regions of the Indian Ocean are also strongly influenced by the flowthrough of Pacific waters north of Australia.

Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 603-610 ◽  
Author(s):  
Quan Hua ◽  
Colin D Woodroffe ◽  
Mike Barbetti ◽  
Scott G Smithers ◽  
Ugo Zoppi ◽  
...  

Known-age corals from the Cocos (Keeling) Islands, Indian Ocean, have been analyzed by accelerator mass spectrometry (AMS) for radiocarbon to determine marine reservoir age corrections. The ΔR value for the Cocos (Keeling) Islands is 66 ± 12 yr based on the analyses undertaken for this study. When our AMS and previously published dates for Cocos are averaged, they yield a ΔR of 64 ± 15 yr. This is a significant revision of an earlier estimate of the ΔR value for the Cocos (Keeling) Islands of 186 ± 66 yr (Toggweiler et al. 1991). The (revised) lower ΔR for the Cocos (Keeling) Islands is consistent with GEOSECS 14C data for the Indian Ocean, and previously published bomb 14C data for the Red Sea, Gulf of Aden, and Cocos Islands. The revised ΔR is also close to values for the eastern Indian Ocean and adjacent seas. These suggest surface waters that reach the Cocos Islands might be partly derived from the far western Pacific, via the Indonesian throughflow, and might not be influenced by the southeast flow from the Arabian Sea.


Author(s):  
Abhijit Singh

Indian naval analyst, Abhijit Singh examines the reasons behind India’s naval engagement in Southeast Asia and Indian perspectives of China’s activities in the South China Sea. Singh argues that in recent years, there has been a discernable shift in India’s maritime posture in the Pacific. While the Indian Navy still identifies the Western Pacific as a secondary area of interest, its operational deployments to Southeast Asia have been gradually rising, signalling an enhanced appreciation of Indian strategic stakes in the region. In many ways, India’s principal drivers for security operations in the Pacific have their origins in the Indian Ocean where New Delhi has for long harboured geopolitical ambitions.


2015 ◽  
Vol 8 ◽  
Author(s):  
Anil Mohapatra ◽  
Dipanjan Ray ◽  
David G. Smith

Gymnothorax prolatusis recorded for the first time from the Indian Ocean on the basis of four specimens collected in the Bay of Bengal off India and one from the Arabian Sea off Pakistan. These records extend the range of the species from Taiwan to the north-western Indian Ocean.


Author(s):  
STEPHEN G. HAW

AbstractThe interpretation of history is often a complex task. All too often, sources are misinterpreted because of historians’ preconceptions. This article takes issue with one such misinterpretation, the anachronistic view that the Strait of Melaka has been the principal sea route connecting the Indian Ocean with the South China Sea throughout most of recorded history. Beginning at a period when an overland journey across the Malay Peninsula was an essential link in the routes connecting South, Southeast and East Asia, it is suggested that the first entirely maritime itinerary to be used regularly passed through the Sunda Strait. Changes in itineraries affected the fortunes of the states of Southeast Asia, particularly of Funan and Srivijaya.


Author(s):  
Julia Slingo ◽  
Hilary Spencer ◽  
Brian Hoskins ◽  
Paul Berrisford ◽  
Emily Black

This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.


2020 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Editors of the JIOWS

The editors are proud to present the first issue of the fourth volume of the Journal of Indian Ocean World Studies. This issue contains three articles, by James Francis Warren (Murdoch University), Kelsey McFaul (University of California, Santa Cruz), and Marek Pawelczak (University of Warsaw), respectively. Warren’s and McFaul’s articles take different approaches to the growing body of work that discusses pirates in the Indian Ocean World, past and present. Warren’s article is historical, exploring the life and times of Julano Taupan in the nineteenth-century Philippines. He invites us to question the meaning of the word ‘pirate’ and the several ways in which Taupan’s life has been interpreted by different European colonists and by anti-colonial movements from the mid-nineteenth century to the present day. McFaul’s article, meanwhile, takes a literary approach to discuss the much more recent phenomenon of Somali Piracy, which reached its apex in the last decade. Its contribution is to analyse the works of authors based in the region, challenging paradigms that have mostly been developed from analysis of works written in the West. Finally, Pawelczak’s article is a legal history of British jurisdiction in mid-late nineteenth-century Zanzibar. It examines one of the facets that underpinned European influence in the western Indian Ocean World before the establishment of colonial rule. In sum, this issue uses two key threads to shed light on the complex relationships between European and other Western powers and the Indian Ocean World.


Author(s):  
Martha R.J. Clokie ◽  
Andrew D. Millard ◽  
Jaytry Y. Mehta ◽  
Nicholas H. Mann

Cyanophage abundance has been shown to fluctuate over long timescales and with depth, but little is known about how it varies over short timescales. Previous short-term studies have relied on counting total virus numbers and therefore the phages which infect cyanobacteria cannot be distinguished from the total count.In this study, an isolation-based approach was used to determine cyanophage abundance from water samples collected over a depth profile for a 24 h period from the Indian Ocean. Samples were used to infect Synechococcus sp. WH7803 and the number of plaque forming units (pfu) at each time point and depth were counted. At 10 m phage numbers were similar for most time-points, but there was a distinct peak in abundance at 0100 hours. Phage numbers were lower at 25 m and 50 m and did not show such strong temporal variation. No phages were found below this depth. Therefore, we conclude that only the abundance of phages in surface waters showed a clear temporal pattern over a short timescale. Fifty phages from a range of depths and time points were isolated and purified. The molecular diversity of these phages was estimated using a section of the phage-encoded psbD gene and the results from a phylogenetic analysis do not suggest that phages from the deeper waters form a distinct subgroup.


Sign in / Sign up

Export Citation Format

Share Document