Effect of 2,4-D and Various Salts on Eurasian Watermilfoil

Weed Science ◽  
1974 ◽  
Vol 22 (6) ◽  
pp. 591-594 ◽  
Author(s):  
Ronald A. Stanley

The management of Eurasian watermilfoil, an inimical aquatic weed in the Tennessee Valley, involves the use of water level management and herbicidal treatment with 2,4-D [(2,4-dichlorophenoxy)acetic acid]. The possible use of other chemicals to make 2,4-D more effective was tested by measuring growth of Eurasian watermilfoil under laboratory conditions with combinations of sublethal levels of 2,4-D and partially inhibitory concentrations of AlCl3, NH4Cl, Na2AsO2, BaCl2, Na2B4O7, CuSO4, HgCl2, Pb(NO3)2, NaCl, and ZnSO4. At the levels tested, BaCl2, Pb(NO3)2, and ZnSO4were only additive in effect with 2,4-D. Other compounds produced synergism at some concentrations and mutual antagonism at other levels. The greatest synergism was obtained by using HgCl2, AlCl3, and NaCl at 0.2 μM, 10.0 μM, and 200.00 mM respectively.

Weed Science ◽  
1975 ◽  
Vol 23 (3) ◽  
pp. 182-184 ◽  
Author(s):  
Ronald A. Stanley

The interaction of 2,4-D [(2,4-dichlorophenoxy) acetic acid], substrate, and calcium on eurasian watermilfoil (Myriophyllum spicatum L.) was determined. The effectiveness of 2,4-D was twice as great on plants grown on a substrate containing soil as it was on plants grown on a sand substrate. The presence of calcium chloride in sand culture during the period of 2,4-D uptake caused comparable or greater increases than sand culture without calcium in the effectiveness of 2,4-D. Possible differences in effectiveness of field treatments were calculated to be 48% greater at the highest natural concentrations of calcium than at the lowest concentrations in water of the Tennessee Valley. Calcium concentration and substrate altered the effectiveness of 2,4-D on eurasian watermilfoil.


HortScience ◽  
1990 ◽  
Vol 25 (5) ◽  
pp. 569-571 ◽  
Author(s):  
A. Raymond Miller ◽  
Craig K. Chandler

A protocol was developed for excising and culturing cotyledon explants from mature achenes of strawberry (Fragaria × ananassa Duch.). Cotyledon explants formed callus with multiple shoot buds on agar-solidified Murashige and Skoog media containing several combinations of hormones (1 μm 2,4-D; 10 μm 2,4-D; 1 μm BA + 1 μm 2,4-D; 1 μm BA + 10 μm 2,4-D; 5 μm BA; 5 μm BA + 1 μm 2,4-D; 5 μm BA + 10 μ m 2,4-D; 5 μ m BA + 5 μm NAA; 5 μ m BA + 15 μ m NAA). After three subcultures, only tissues maintained on the medium containing 5 μm BA + 5 μm NAA continued to form shoots. Tissues transferred to other media eventually died (1 μm 2,4-D; 1 μ m BA + 10 μ m 2,4-D; 5 μ m BA; 5 μ m BA + 1 μ m 2,4-D), became unorganized (1 μm BA + 1 μm 2,4-D; 5 μm BA + 10 μm 2,4-D; 5 μm BA + 15 μm NAA), or formed roots (10 μm 2,4-D). Whole plantlets were produced by transferring callus with buds to medium lacking hormones. The rapid regeneration of clonal plantlets from cotyledon explants may be useful for reducing variability in future developmental studies. Chemical names used: N-(phenylmethyl)-1H-purin-6-amine (BA); (2,4-dichlorophenoxy) acetic acid (2,4-D); and 1-naphthaleneacetic acid (NAA).


Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 376-377 ◽  
Author(s):  
Cecil Regier ◽  
R. E. Dilbeck ◽  
D. J. Undersander ◽  
J. E. Quisenberry

1995 ◽  
Vol 31 (8) ◽  
pp. 239-243 ◽  
Author(s):  
W. Ligtvoet ◽  
S. A. de Jong

In the 6000 ha Lake Volkerak-Zoom, a new freshwater system in the estuarine southwest of The Netherlands, biomanipulation is used as a tool in ecosystem development. The basic ecological concepts for ecosystem development are described. Key factors in the integrated water management are fish stock management and water level management, geared towards creating optimal conditions for northern pike, the dominant predator in mesotrophic waters. The main aspects of the water level management and the fish stock management are outlined.


Weed Science ◽  
1971 ◽  
Vol 19 (6) ◽  
pp. 701-705 ◽  
Author(s):  
R. J. Burr ◽  
G. F. Warren

Several herbicides were tested in the greenhouse on ivyleaf morningglory (Ipomoea hederacea(L.) Jacq.), green foxtail (Setaria viridis(L.) Beauv.), purple nutsedge (Cyperus rotundusL.), and quackgrass (Agropyron repens(L.) Beauv.) to determine the degree of enhancement in activity that could be obtained with an isoparaffinic oil carrier applied at 140 L/ha. The enhancement varied with the herbicide and with the species, ranging from 16-fold enhancement with 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) and 2-sec-butyl-4,6-dinitrophenol (dinoseb) on ivyleaf morningglory to no enhancement of atrazine activity on purple nutsedge and quackgrass or (2,4-dichlorophenoxy)acetic acid (2,4-D) activity on quackgrass and ivyleaf morningglory. An oil adjuvant was less effective in enhancing dinoseb and 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) activity than was the isoparaffinic oil carrier. Also, the isoparaffinic oil carrier emulsified in water was less effective than the undiluted oil in enhancing dinoseb activity on green foxtail, even though equal volumes of the isoparaffinic oil were applied.


2009 ◽  
Vol 36 (No. 4) ◽  
pp. 140-146 ◽  
Author(s):  
J.K. Kanwar ◽  
S. Kumar

The influence of growth regulators, explants and their interactions on in vitro shoot bud formation from callus was studied in <I>Dianthus caryophyllus</I> L. The leaf and internode explants were cultured on Murashige and Skoog (MS) medium containing different concentrations of growth regulators. The highest callus induction was observed with 2 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D) and 1 mg/l benzyl adenine (BA). Out of twenty seven shoot regeneration media tested, only 2 mg/l thidiazuron (TDZ) and zeatin alone or in combination with naphthalene acetic acid (NAA) and/or indole acetic acid (IAA) could differentiate calli. The highest average number of shoots was observed with 2 mg/l TDZ and 1 mg/l IAA. Significant differences were observed in calli producing shoots and number of shoots per callus in the explants of leaf and internode. The shoots were elongated and multiplied on MS medium supplemented with 1 mg/l BA and solidified with 1% agar. The shoots were rooted and hardened with 76% survival success in pots after six weeks of transfer to the pots.


Sign in / Sign up

Export Citation Format

Share Document