Factors Affecting Thiocarbamate Injury to Corn I. Temperature and Soil Moisture

Weed Science ◽  
1976 ◽  
Vol 24 (3) ◽  
pp. 319-321 ◽  
Author(s):  
G. W. Burt ◽  
A. O. Akinsorotan

Corn (Zea maysL.) was grown in EPTC-(S-ethyl dipropylthiocarbamate) and butylate-(S-ethyl diisobutylthiocarbamate) treated soil at 33 and 15% moisture in growth chambers at 30 and 20 C. EPTC (6 and 18 ppm) and butylate (19 and 50 ppm) reduced corn growth more at 30 than at 20 C. The days before emergence of the corn coleoptile were the most critical time for thiocarbamate injury. When plants were grown at 30 C before emergence more injury occurred at 33% soil moisture than at 15% except with butylate at 19 ppm. At 20 C, however, plants grew as tall or taller at 33% soil moisture than at 15% except for butylate at 19 ppm. Addition of R-25788 (N,N-diallyl-2,2-dichloroacetamide) to EPTC and butylate increased by about 10 times the amount of herbicide required to injure corn. With R-25788 the toxicity of these two herbicides was not influenced greatly by either temperature or soil moisture.

Weed Science ◽  
1976 ◽  
Vol 24 (3) ◽  
pp. 327-330 ◽  
Author(s):  
G. W. Burt

The influence of several factors on the injury to corn (Zea maysL.) seedlings from high rates of EPTC (S-ethyl dipropylthiocarbamate) + R-25788 (N,N-diallyl-2,2-dichloroacetamide) was determined in growth chambers. This herbicide combination severely injured 6% of the corn seedlings at rates as low as 14 ppm if the herbicide was poorly incorporated into the soil. If thoroughly incorporated, severe injury did not occur unless the rate of application exceeded 56 ppm. Decreased injury resulted when seed were placed so as to insure rapid shoot emergence. Seed planted at 2 cm with its coleoptile pointed upward or horizontally (with posterior facing upward) was injured less than in other positions, Corn cultivars differ in their susceptibility to EPTC + R-25788 at 30 but not at 20 C. Of the several corn cultivars tested at 30 C, SX-98 was the least injured by EPTC + R-25788. Corn injury was progressively reduced as leaching volumes were increased and as the time from herbicide application to corn planting was increased.


2011 ◽  
Vol 37 (7) ◽  
pp. 1259-1265 ◽  
Author(s):  
Juan-Juan ZHU ◽  
Yin-Li LIANG ◽  
TREMBLAY Nicolas

2014 ◽  
Vol 51 (1) ◽  
pp. 107-125 ◽  
Author(s):  
ANUP DAS ◽  
P. K. GHOSH ◽  
M. R. VERMA ◽  
G. C. MUNDA ◽  
S. V. NGACHAN ◽  
...  

SUMMARYThe north eastern region (NER) of India receives a high amount of rainfall (2450 mm) both in terms of intensity and frequency. Most of the precipitation goes waste because of improper conservation measures and inadequate rainwater harvesting. Growing a second crop during winter (rabi) season on hill slopes and uplands without moisture conservation measure is almost impossible. A simple and very low-cost technique of in situ soil moisture conservation in maize (Zea mays L.)–toria (Brassica campestris L.) system has been developed using residue of preceding rainy season maize crop and mulching with locally available weed biomass Ambrosia artemisiifolia. Six residue mulching combinations tested were viz. control, Maize stalk cover (MSC), MSC + Ambrosia sp. 5 t/ha, MSC + Ambrosia sp. 10 t/ha, MSC + farmyard manure (FYM) 10 t/ha and MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha under zero tillage (ZT) and conventional tillage (CT) systems. Results showed that in situ residue retention of preceding maize crop along with green biomass of Ambrosia sp., applied before sowing of toria, maintained optimum soil moisture for good growth and higher yield of toria. The soil moisture content was consistently higher under residue mulched plots than that under control. All the residue mulching measures recorded higher crop yield for maize and toria than those observed under residue removal (control). The productivity of toria was enhanced by about 99%, only due to retention of MSC as mulch. Mulching with MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha recorded the highest seed yield of toria (four-year average: 641 kg/ha), which was 228% and 64% higher than no mulching (control) and MSC alone. MSC + FYM 10 t/ha (568.3 t/ha) and MSC + Ambrosia sp. 10 t/ha (517.4 t/ha) were found equally effective and produced significantly higher toria yield than that of control. MSC + Ambrosia mulch 10 t/ha gave the highest net returns and B:C ratio of the maize–toria system. The overall B:C ratios were better under ZT than CT. Thus, the study indicated that the integrated management of crop residues and weed biomass (Ambrosia sp.) under ZT created favourable soil moisture to support double cropping with high yield in hill eco-system of northeastern Indian Himalayas.


Author(s):  
Aurélie Marion ◽  
Julien Morin ◽  
Elena Ormeno ◽  
Sylvie Dupouyet ◽  
Barbara D'Anna ◽  
...  

Genetika ◽  
2013 ◽  
Vol 45 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Branka Kresovic ◽  
Vesna Dragicevic ◽  
Bosko Gajic ◽  
Angelina Tapanarova ◽  
Borivoj Pejic

The aim of the present study was to observe the response of maize hybrids under rainfed and irrigation conditions of the soil in order to establish the dependence of yielding potential on the water amounts reaching the soil surface during the growing season. The four-replicate trail was set up according to the randomised complete-block design on chernozem. Pre-watering soil moisture was approximately 70% of field water capacity, and soil moisture was established thermogravimetrically. During the five-year studies, the following differences in yields could be as follows: 12.68 t ha-1 (ZP 341); 12.76 t ha-1 (ZP 434); 13.17 t ha-1 (ZP 578); 14.03 t ha-1 (ZP 684) and 13.75 t ha-1 (ZP 704) under conditions of 440 mm, 440 mm, 424 mm, 457 mm and 466 mm of water, respectively. The hybrid ZP 341, i.e. ZP 578 expressed the highest, i.e. the lowest tolerance in dry relative seasons, respectively. The reduction of the water amount for every 10 mm decreased the yield by 119.4 kg ha-1 (ZP 341), 156.7 kg ha-1 (ZP 434), 172.3 kg ha-1 (ZP 578), 148.9 kg ha-1 (ZP 684) and 151.1 kg ha-1 (ZP 704).


2021 ◽  
Author(s):  
Maria Piles ◽  
Roberto Fernandez-Moran ◽  
Luis Gómez-Chova ◽  
Gustau Camps-Valls ◽  
Dara Entekhabi ◽  
...  

<p>The Copernicus Imaging Microwave Radiometer (CIMR) mission is currently being developed as a High Priority Copernicus Mission to support the Integrated European Policy for the Arctic. Due to its measurement characteristics, CIMR has exciting capabilities to enable a unique set of land surface products and science applications at a global scale. These characteristics go beyond what previous microwave radiometers (e.g. AMSR series, SMAP and SMOS) provide, and therefore allow for entirely new approaches to the estimation of bio-geophysical products from brightness temperature observations. Most notably, CIMR channels (L-,C-,X-,Ka-,Ku-bands) are very well fit for the simultaneous retrieval of soil moisture and vegetation properties, like biomass and moisture of different plant components such as leaves, stems or trunks. Also, the distinct spatial resolution of each frequency band allows for the development of approaches to cascade information and obtain these properties at multiple spatial scales. From a temporal perspective, CIMR has a higher revisit time than previous L-band missions dedicated to soil moisture monitoring (about 1 day global, sub-daily at the poles). This improved temporal resolution could allow resolving critical time scales of water processes, which is relevant to better model and understand land-atmosphere exchanges and feedbacks. In this presentation, new opportunities for soil moisture remote sensing made possible by the CIMR mission, as well as synergies and cross-sensor opportunities will be discussed.  </p>


2020 ◽  
Vol 14 (1) ◽  
pp. 8-23
Author(s):  
Tobi Moriaque Akplo ◽  
Alladassi Félix Kouelo ◽  
Agassin Arcadius Martinien Ahoglé ◽  
Pascal Houngnandan ◽  
Hessou Anastase Azontondé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document