Responses of Corn (Zea mays L.) Nitrogen Status Indicators to Nitrogen Rates and Soil Moisture

2011 ◽  
Vol 37 (7) ◽  
pp. 1259-1265 ◽  
Author(s):  
Juan-Juan ZHU ◽  
Yin-Li LIANG ◽  
TREMBLAY Nicolas
2011 ◽  
Vol 37 (7) ◽  
pp. 1259-1265
Author(s):  
Juan-Juan ZHU ◽  
Yin-Li LIANG ◽  
Nicolas TREMBLAY

2014 ◽  
Vol 51 (1) ◽  
pp. 107-125 ◽  
Author(s):  
ANUP DAS ◽  
P. K. GHOSH ◽  
M. R. VERMA ◽  
G. C. MUNDA ◽  
S. V. NGACHAN ◽  
...  

SUMMARYThe north eastern region (NER) of India receives a high amount of rainfall (2450 mm) both in terms of intensity and frequency. Most of the precipitation goes waste because of improper conservation measures and inadequate rainwater harvesting. Growing a second crop during winter (rabi) season on hill slopes and uplands without moisture conservation measure is almost impossible. A simple and very low-cost technique of in situ soil moisture conservation in maize (Zea mays L.)–toria (Brassica campestris L.) system has been developed using residue of preceding rainy season maize crop and mulching with locally available weed biomass Ambrosia artemisiifolia. Six residue mulching combinations tested were viz. control, Maize stalk cover (MSC), MSC + Ambrosia sp. 5 t/ha, MSC + Ambrosia sp. 10 t/ha, MSC + farmyard manure (FYM) 10 t/ha and MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha under zero tillage (ZT) and conventional tillage (CT) systems. Results showed that in situ residue retention of preceding maize crop along with green biomass of Ambrosia sp., applied before sowing of toria, maintained optimum soil moisture for good growth and higher yield of toria. The soil moisture content was consistently higher under residue mulched plots than that under control. All the residue mulching measures recorded higher crop yield for maize and toria than those observed under residue removal (control). The productivity of toria was enhanced by about 99%, only due to retention of MSC as mulch. Mulching with MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha recorded the highest seed yield of toria (four-year average: 641 kg/ha), which was 228% and 64% higher than no mulching (control) and MSC alone. MSC + FYM 10 t/ha (568.3 t/ha) and MSC + Ambrosia sp. 10 t/ha (517.4 t/ha) were found equally effective and produced significantly higher toria yield than that of control. MSC + Ambrosia mulch 10 t/ha gave the highest net returns and B:C ratio of the maize–toria system. The overall B:C ratios were better under ZT than CT. Thus, the study indicated that the integrated management of crop residues and weed biomass (Ambrosia sp.) under ZT created favourable soil moisture to support double cropping with high yield in hill eco-system of northeastern Indian Himalayas.


Genetika ◽  
2013 ◽  
Vol 45 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Branka Kresovic ◽  
Vesna Dragicevic ◽  
Bosko Gajic ◽  
Angelina Tapanarova ◽  
Borivoj Pejic

The aim of the present study was to observe the response of maize hybrids under rainfed and irrigation conditions of the soil in order to establish the dependence of yielding potential on the water amounts reaching the soil surface during the growing season. The four-replicate trail was set up according to the randomised complete-block design on chernozem. Pre-watering soil moisture was approximately 70% of field water capacity, and soil moisture was established thermogravimetrically. During the five-year studies, the following differences in yields could be as follows: 12.68 t ha-1 (ZP 341); 12.76 t ha-1 (ZP 434); 13.17 t ha-1 (ZP 578); 14.03 t ha-1 (ZP 684) and 13.75 t ha-1 (ZP 704) under conditions of 440 mm, 440 mm, 424 mm, 457 mm and 466 mm of water, respectively. The hybrid ZP 341, i.e. ZP 578 expressed the highest, i.e. the lowest tolerance in dry relative seasons, respectively. The reduction of the water amount for every 10 mm decreased the yield by 119.4 kg ha-1 (ZP 341), 156.7 kg ha-1 (ZP 434), 172.3 kg ha-1 (ZP 578), 148.9 kg ha-1 (ZP 684) and 151.1 kg ha-1 (ZP 704).


2010 ◽  
Vol 56 (No. 12) ◽  
pp. 574-579 ◽  
Author(s):  
T. Lošák ◽  
J. Hlušek ◽  
R. Filipčík ◽  
L. Pospíšilová ◽  
J. Maňásek ◽  
...  

In two-year field experiments, nitrogen (N) in the form of urea (0, 120 and 240 kg N/ha) was applied to grain maize (Zea mays L.) hybrid KWS 2376. The two-year mean content of total grain N at harvest was 1.54%. The highest N dose reduced most of the 17 amino acids (AA) analysed in the grain compared with the other treatments. Possible reasons for this could be an adverse effect on the tricarboxylic acid cycle or deficiency of carbon skeletons for the assimilation of NH<sub>4</sub><sup>+</sup> into amides and amino acids. The content of the limiting amino acid lysine was not influenced by N fertilisation, with a mean two-year content of 2.02 mg/g DM. Taking into account the differences in fertilisation, the effect of the year was seen in the maximal accumulation of amino acids serine, proline, methionine, threonine, arginine and lysine. Increasing rates of nitrogen reduced the accumulation of asparagine and glycine, and, on the contrary, increased the accumulation of tyrosine. Nitrogen rates have a significant effect on the maximal accumulation of valine, isoleucine, leucine, phenylalanine, histidine, cysteine and alanine and appeared as early as after the first increased rate of nitrogen (120 kg N/ha).


2020 ◽  
Vol 14 (1) ◽  
pp. 8-23
Author(s):  
Tobi Moriaque Akplo ◽  
Alladassi Félix Kouelo ◽  
Agassin Arcadius Martinien Ahoglé ◽  
Pascal Houngnandan ◽  
Hessou Anastase Azontondé ◽  
...  

Weed Science ◽  
1984 ◽  
Vol 32 (2) ◽  
pp. 226-234 ◽  
Author(s):  
Frank L. Young ◽  
Donald L. Wyse ◽  
Robert J. Jones

Field studies were conducted to evaluate the effect of quackgrass [Agropyron repens(L.) Beauv. ♯ AGRRE] density and soil moisture on corn (Zea maysL.) growth and yield. Quackgrass densities ranging from 65 to 390 shoots/m2reduced corn yield 12 to 16%. A quackgrass density of 745 shoots/m2reduced corn yields an average of 37% and significantly reduced corn height, ear length, ear-fill length, kernels/row, rows/ear, and seed weight. In the soil moisture study, quackgrass was shorter than corn throughout the growing season, and analyses of corn leaf tissue indicated that quackgrass did not interfere with the nutrient status of the corn. In 1979, soil moisture was not limiting and corn yields were similar in all treatments regardless of irrigation or the presence of quackgrass. In 1980, soil moisture was limited and irrigation increased the yield of quackgrass-free corn. Irrigation also increased the yield of quackgrass-infested corn to a level similar to irrigated corn. When light and nutrients are not limiting factors, an adequate supply of soil moisture can eliminate the effects of quackgrass interference on the growth, development, and yield of corn.


Weed Science ◽  
1976 ◽  
Vol 24 (3) ◽  
pp. 319-321 ◽  
Author(s):  
G. W. Burt ◽  
A. O. Akinsorotan

Corn (Zea maysL.) was grown in EPTC-(S-ethyl dipropylthiocarbamate) and butylate-(S-ethyl diisobutylthiocarbamate) treated soil at 33 and 15% moisture in growth chambers at 30 and 20 C. EPTC (6 and 18 ppm) and butylate (19 and 50 ppm) reduced corn growth more at 30 than at 20 C. The days before emergence of the corn coleoptile were the most critical time for thiocarbamate injury. When plants were grown at 30 C before emergence more injury occurred at 33% soil moisture than at 15% except with butylate at 19 ppm. At 20 C, however, plants grew as tall or taller at 33% soil moisture than at 15% except for butylate at 19 ppm. Addition of R-25788 (N,N-diallyl-2,2-dichloroacetamide) to EPTC and butylate increased by about 10 times the amount of herbicide required to injure corn. With R-25788 the toxicity of these two herbicides was not influenced greatly by either temperature or soil moisture.


2008 ◽  
Vol 54 (No. 12) ◽  
pp. 509-519 ◽  
Author(s):  
B. Konôpka ◽  
L. Pagès ◽  
C. Doussan

Soil compaction heterogeneity and water content are supposed to be decisive factors influencing plant growth. Our experiment focused on simulation of two soil moisture levels (0.16 and 0.19 g/g) plus two levels of clod proportion (30 and 60% volume) and their effects on root and leaf variables of maize (<I>Zea mays</I> L.). We studied number of primary and lateral roots as well as primary root length at the particular soil depths. Statistical tests showed that the decrease rate of the number of roots versus depth was significantly affected by the two studied factors (<I>P</I> < 0.01). Soil moisture and clod occurrence, interactively, affected leaf biomass (<I>P</I> = 0.02). Presence of clods modified root morphological features. Particularly, the diameter of primary roots in the clods was significantly higher than of those grown in fine soil (<I>P</I> < 0.01). For primary roots, which penetrated clods, branching density decreased considerably for the root segments located just after the clods (<I>P</I> = 0.01). Regarding their avoidance to clods and tortuosity, large differences were found between primary roots grown in the contrasting soil environments.


Sign in / Sign up

Export Citation Format

Share Document