Molecular targets of dietary phytochemicals for the alleviation of heat stress in poultry

2013 ◽  
Vol 69 (1) ◽  
pp. 113-124 ◽  
Author(s):  
K. Sahin ◽  
C. Orhan ◽  
M.O. Smith ◽  
N. Sahin
Author(s):  
Oliver Selmoni ◽  
Gaël Lecellier ◽  
Hélène Magalon ◽  
Laurent Vigliola ◽  
Francesca Benzoni ◽  
...  

AbstractAnomalous heat waves are causing a major decline of hard corals around the world and threatening the persistence of coral reefs. There are, however, reefs that had been exposed to recurrent thermal stress over the years and whose corals appeared tolerant against heat. One of the mechanisms that could explain this phenomenon is local adaptation, but the underlying molecular mechanisms are poorly known.In this work, we applied a seascape genomics approach to study heat stress adaptation in three coral species of New Caledonia (southwestern Pacific) and to uncover molecular actors potentially involved. We used remote sensing data to characterize the environmental trends across the reef system, and sampled corals living at the most contrasted sites. These samples underwent next generation sequencing to reveal single-nucleotide-polymorphisms (SNPs) of which frequencies associated with heat stress gradients. As these SNPs might underpin an adaptive role, we characterized the functional roles of the genes located in their genomic neighborhood.In each of the studied species, we found heat stress associated SNPs notably located in proximity of genes coding for well-established actors of the cellular responses against heat. Among these, we can mention proteins involved in DNA damage-repair, protein folding, oxidative stress homeostasis, inflammatory and apoptotic pathways. In some cases, the same putative molecular targets of heat stress adaptation recurred among species.Together, these results underscore the relevance and the power of the seascape genomics approach for the discovery of adaptive traits that could allow corals to persist across wider thermal ranges.


2012 ◽  
Vol 12 (9) ◽  
pp. 1191-1232
Author(s):  
Anupam Bishayee ◽  
Roslin J. Thoppil ◽  
Abhijeet Waghray ◽  
Jaclyn A. Kruse ◽  
Nicholas A. Novotny ◽  
...  

2012 ◽  
Vol 12 (9) ◽  
pp. 1191-1232 ◽  
Author(s):  
Anupam Bishayee ◽  
Roslin J. Thoppil ◽  
Abhijeet Waghray ◽  
Jaclyn A. Kruse ◽  
Nicholas A. Novotny ◽  
...  

2021 ◽  
Vol 30 (8) ◽  
pp. 1892-1906
Author(s):  
Oliver Selmoni ◽  
Gaël Lecellier ◽  
Hélène Magalon ◽  
Laurent Vigliola ◽  
Nicolas Oury ◽  
...  

2017 ◽  
Vol 57 (17) ◽  
pp. 3583-3600 ◽  
Author(s):  
Md Soriful Islam ◽  
Most Mauluda Akhtar ◽  
James H. Segars ◽  
Mario Castellucci ◽  
Pasquapina Ciarmela

2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
P De Medina ◽  
S Genovese ◽  
M Pailasse ◽  
S Silvente-Poirot ◽  
M Curini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document