scholarly journals Ultraviolet Observations of Some Close Binary Systems by the Astronomical Netherlands Satellite-Ans

1976 ◽  
Vol 73 ◽  
pp. 213-223
Author(s):  
Chi-Chao Wu

Observations of δ Pic, a β Lyr type of eclipsing binary and seven dwarf novae are reported. The ultraviolet light curves of δ Pic indicate the accumulation of matter at the triangular Lagrangian points L4 and L5, the presence of a hot spot and a higher temperature for the primary star. The implication is that the cooler secondary fills its Roche lobe and is transfering mass to the primary; mass loss to the circumstellar space and possibly to the system may also be appreciable. The temperatures of dwarf novae are derived by comparing their ultraviolet spectral energy distributions with those for normal stars of luminosity classes IV and V. Piecing together observations for different objects, the SSCyg systems have temperatures of 28 500 K, 10 000 K and 9500 K, respectively, when they are at minimum, immediately before outburst and at the beginning of rise to maximum. At maximum, the temperature is 22 500 K or 17 300 K depending on the interstellar reddening correction for AR And. Immediately before outburst, there is a large excess of flux in the far ultraviolet as indicated by the large value of the ratio of flux at 1550 Å to that at 1800 Å. The observations of Z Cam during standstill gives a temperature of 14 900 K. No excess of flux in the far ultraviolet was observed during the maximum of AR And and the standstill of Z Cam.

2012 ◽  
Vol 29 (4) ◽  
pp. 523-528 ◽  
Author(s):  
M. Al-Wardat

AbstractAtmospheric modelling of the components of the visually close binary systems Hip70973 and Hip72479 was used to estimate the individual physical parameters of their components. The model atmospheres were constructed using a grid of Kurucz solar metalicity blanketed models and used to compute a synthetic spectral energy distribution for each component separately, and hence for the combined system. The total observational spectral energy distributions of the systems were used as a reference for comparison with the synthetic ones. We used the feedback modified parameters and iteration method to obtain the best fit between synthetic and observational spectral energy distributions. The physical parameters of the components of the system Hip70973 were derived as = 5700 ± 75 K, = 5400 ± 75 K, log ga = 4.50 ± 0.05, log gb = 4.50 ± 0.05, Ra = 0.98 ± 0.07 R⊙, Rb = 0.89 ± 0.07 R⊙, and π = 26.25 ± 1.95 mas, with G4 and G9 spectral types, and those of the system Hip72479 as = 5400 ± 50 K, = 5180 ± 50 K, log ga = 4.50 ± 0.05, log gb = 4.60 ± 0.05, Ra = 0.89 ± 0.07 R⊙, Rb = 0.80 ± 0.07 R⊙, and π = 23.59 ± 1.00 mas, with G9 and K1 spectral types.


1980 ◽  
Vol 88 ◽  
pp. 431-437
Author(s):  
I. G. Mitrofanov

Novae (N) and Dwarf Novae (DN) are considered to belong to the class of the Cataclysmic Variables (CVs). The Novalike stars and recently discovered Polars (the AM Herculis-type stars) seem to have the same nature as CVs and probably are members of this class. It is usually assumed that CVs are close binary systems, each system contains a degenerate dwarf and a nondegenerate second component, their period being usually less than 16h (e.g. see: Robinson 1976). A second star is believed to overfill its Roche lobe and its matter flows onto the degenerated component. Then around the degenerated dwarf there arises an accretion disk. This disk and the hot spot where the interaction between the disk and outflowing stream occurs are the main sources of the blue and ultraviolet continuum and strong H and He emission lines.


1979 ◽  
Vol 46 ◽  
pp. 77-88
Author(s):  
Edward L. Robinson

Three distinct kinds of rapid variations have been detected in the light curves of dwarf novae: rapid flickering, short period coherent oscillations, and quasi-periodic oscillations. The rapid flickering is seen in the light curves of most, if not all, dwarf novae, and is especially apparent during minimum light between eruptions. The flickering has a typical time scale of a few minutes or less and a typical amplitude of about .1 mag. The flickering is completely random and unpredictable; the power spectrum of flickering shows only a slow decrease from low to high frequencies. The observations of U Gem by Warner and Nather (1971) showed conclusively that most of the flickering is produced by variations in the luminosity of the bright spot near the outer edge of the accretion disk around the white dwarf in these close binary systems.


1988 ◽  
Vol 108 ◽  
pp. 238-239
Author(s):  
Yoji Osaki ◽  
Masahito Hirose

SU UMa stars are one of subclasses of dwarf novae. Dwarf novae are semi-detached close binary systems in which a Roche-lobe filling red dwarf secondary loses matter and the white dwarf primary accretes it through the accretion disk. The main characteristics of SU UMa subclass is that they show two kinds of outbursts: normal outbursts and superoutbursts. In addition to the more frequent narrow outbursts of normal dwarf nova, SU UMa stars exhibit “superoutbursts”, in which stars reach about 1 magnitude brighter and stay longer than in normal outburst. Careful photometric studies during superoutburst have almost always revealed the “superhumps”: periodic humps in light curves with a period very close to the orbital period of the system. However, the most curious of all is that this superhump period is not exactly equal to the orbital period, but it is always longer by a few percent than the orbital period.


1976 ◽  
Vol 73 ◽  
pp. 27-34 ◽  
Author(s):  
C. De Loore ◽  
J. P. De Greve

It is well known that the outcome of case B evolution of the primaries of massive close binary systems (M1 ≥ 9 M⊙) depends on the initial primary mass. The most massive primaries finally ignite carbon, form iron cores and presumably end in a supernova explosion, whereas the lighter ones presumably end as white dwarfs, without carbon ignition. This paper derives an estimate of the mass boundary separating these two kinds of evolution.As an example of the first case, the evolution of a 20 M⊙ + 14 M⊙ system was computed; after the mass exchange, the primary star (with M = 5.43 M⊙) evolves through the helium-burning (Wolf-Rayet) stage towards a supernova explosion; finally the system evolves into an X-ray binary (BWRX-evolution).As a representative for the second case the evolution of a 10 M⊙ + 8 M⊙ system was examined. After the first stage of mass exchange, the primary (with a mass of 1.66 M⊙) approaches the helium main sequence; during later phases of helium burning the radius increases again, and a second stage of mass transfer starts; after this the star (with a mass of 1.14 M⊙) again evolves towards the left in the Hertzsprung-Russell diagram and ends as a white dwarf (BSWD-evolution). A system of 15 M⊙ + 8 M⊙ is found to evolve very similar to the 20 M⊙ + 14 M⊙ system. The mass Mu, separating the two types of evolution, must therefore be situated between 10 and 15 solar masses. An initial chemical composition X = 0.70, Z = 0.03 was used for all systems.


1982 ◽  
Vol 69 ◽  
pp. 219-230 ◽  
Author(s):  
G. Hensler

AbstractA numerical method for 3D magnetohydrodynamical investigations of accretion disks in close binary systems is presented, which allows for good spatial resolution of structures (hot spot, accretion column). The gas is treated as individual gas cells (pseudo-particles) whose motion is calculated within a grid consisting of one spherical inner part for 3D MHD and two plane outer parts. Viscous interactions of the gas cells are taken into account by a special treatment connected with the grid geometry.We present one result of 2D hydrodynamical calculations for a binary applying the following parameters which are representative for Cataclysmic Variables: M1 = 1 Mʘ, r1 = 10-2 Rʘ, M2 = 0.5 Mʘ, p = 0.2 d, M = 10-9 Mʘ y-1.Column density and radiative flux distributions over the disk are shown and briefly discussed by comparison with the theoretical understanding of these Dwarf Novae drawn from observations.


2020 ◽  
Vol 494 (4) ◽  
pp. 5118-5133 ◽  
Author(s):  
D W Kurtz ◽  
G Handler ◽  
S A Rappaport ◽  
H Saio ◽  
J Fuller ◽  
...  

ABSTRACT CO Cam (TIC 160268882) is the second ‘single-sided pulsator’ to be discovered. These are stars where one hemisphere pulsates with a significantly higher amplitude than the other side of the star. CO Cam is a binary star comprised of an Am δ Sct primary star with Teff = 7070 ± 150 K, and a spectroscopically undetected G main-sequence secondary star. The dominant pulsating side of the primary star is centred on the L1 point. We have modelled the spectral energy distribution combined with radial velocities, and independently the TESS light curve combined with radial velocities. Both of these give excellent agreement and robust system parameters for both stars. The δ Sct star is an oblique pulsator with at least four low radial overtone (probably) f modes with the pulsation axis coinciding with the tidal axis of the star, the line of apsides. Preliminary theoretical modelling indicates that the modes must produce much larger flux perturbations near the L1 point, although this is difficult to understand because the pulsating star does not come near to filling its Roche lobe. More detailed models of distorted pulsating stars should be developed. These newly discovered single-sided pulsators offer new opportunities for astrophysical inference from stars that are oblique pulsators in close binary stars.


1980 ◽  
Vol 88 ◽  
pp. 237-241
Author(s):  
Yoji Kondo ◽  
George E. McCluskey ◽  
Robert E. Stencel

The eclipsing binary U Cephei has proven to be of great interest in the study of stellar evolution in close binary systems. Batten (1974), Hall and Walter (1974), Rhombs and Fix (1976), Markworth (1977), and Olson (1978), among others, have recently reported on their intensive ground based studies of U Cephei. Kondo, McCluskey and Wu (1978) have investigated the ultraviolet light curves of U Cephei obtained with Astronomical Netherlands Satellite (ANS). Kondo, McCluskey and Stencel (1979) have discussed the International Ultraviolet Explorer (IUE) spectra of U Cephei. This paper discusses results incorporating additional IUE high resolution spectra of U Cephei obtained in both far-ultraviolet and mid-ultraviolet spectral regions.


1983 ◽  
Vol 102 ◽  
pp. 199-202
Author(s):  
Gibor Basri ◽  
Robert Laurent ◽  
Fredrick Walter

Since the advent of extensive ultraviolet observations of cool stars, it has been clear that the stellar activity observed is not directly correlated with the star's position on the HR diagram (Basri and Linsky 1979, Stencel et al. 1980). Observations of an important chromospheric diagnostic, the MgII resonance lines, led to the conclusion that stellar chromospheric activity had only a weak dependence on spectral type, and exhibited large variations within a given spectral type. Because of the strong observed correlation of solar activity with magnetic fields, the field is thought to be a natural candidate for the extra parameter which predicts the level of activity. Unfortunately, it is quite difficult to measure magnetic fields directly in most cool stars. Another method with which to examine correlations between magnetic field and stellar activity indirectly is the hypothesis that magnetic fluxes are directly related to a combination of the convective and rotational parameters of a star through its generation in a magnetic dynamo. The α-ω dynamo theory (Parker, 1979) predicts a direct correlation between differential rotational velocities and field generated. Durney and Robinson (1982) predict basically a linear dependence of the emergent flux on the angular velocity of the star. One might therefore expect that in stars with the same fundamental stellar parameters, the amount of activity observed would depend on the rotational velocities. This is difficult to test because most cool stars are slow rotators and only a few rotational velocities are known.


Sign in / Sign up

Export Citation Format

Share Document