scholarly journals Observations of velocity fields in WN and Of stars

1979 ◽  
Vol 83 ◽  
pp. 475-478
Author(s):  
Virpi S. Niemelä

Systematic wavelength shifts of series of spectral line centers observed in many early type stars, generally interpreted as due to large scale motions, can give us information about the velocity gradients in stellar atmospheres. However, it should be borne in mind that the velocity gradients inferred from the observed displacements of spectral lines may not correspond to a unique alternative (e.g. see Karp 1978). Also, and especially when we are dealing with stars which have emission lines in their spectra, the structure of the velocity field depends on the assumed temperature structure of the atmosphere, i.e. in which atmospheric region do the lines originate.

2000 ◽  
Vol 175 ◽  
pp. 26-36 ◽  
Author(s):  
Franz-Josef Zickgraf

AbstractThe characteristics of the various types of B[e] stars are discussed and compared with those of classical Be stars. Both groups of stars are characterized by the presence of emission lines in their spectra, in particular of hydrogen. However, there are also significant differences between these classes. Classical Be stars lack hot circumstellar dust and strong forbidden low-excitation emission lines, which are typical characteristics produced by B[e]-type stars. While classical Be stars are a rather uniform group of early-type stars, B[e]-type stars form a quite heterogeneous group, very often of poorly known evolutionary status, comprising such diverse types of objects as near main-sequence objects, evolved lowmass proto-planetray nebulae and massive evolved hot supergiants. Even pre-main sequence Herbig Ae/Be stars sometimes find their way into the group of B[e] stars. However, despite these dissimilarities classical Be stars and B[e]-type stars, share a common property, namely the nonsphericity of their circumstellar envelopes.


1996 ◽  
Vol 461 ◽  
pp. 972 ◽  
Author(s):  
T. A. A. Sigut ◽  
John B. Lester

1976 ◽  
Vol 70 ◽  
pp. 99-103
Author(s):  
R. Viotti ◽  
P. Koubský

The appearance of singly ionized iron emission lines in the spectra of early type stars is studied, and the results of a spectroscopic investigation of EW Lac and other Be stars are given. We also discuss the atomic processes of excitation of Fe ii in the stellar envelopes using a two-parameter diagram W, NeT−1/2e.


1995 ◽  
Vol 155 ◽  
pp. 373-374
Author(s):  
Michael D. Albrow ◽  
P. L. Cottrell

There has been a number of observational programmes that have endeavoured to investigate the atmospheric velocity fields in Cepheids (e.g., Sanford 1956, Wallerstein et al. 1992, Butler 1993). These studies measured the radial velocities of lines of different strength, excitation and ionisation potential as these provide an indication of line formation at different levels in the atmosphere. From these measurements, the presence of velocity gradients can be inferred, but determination of the magnitude of such gradients requires knowledge of the spectral line depth of formation. Through dynamical modelling we are endeavouring to ascertain what is actually being measured in the above observational programmes.


1986 ◽  
Vol 116 ◽  
pp. 113-116
Author(s):  
Fiorella Castelli ◽  
Carlo Morossi ◽  
Roberto Stalio

The presence in the far-UV spectra of early-type stars of spectral lines of superionized atoms is argument of controversial debate among astronomers. Presently there is agreement on the non-radiative origin of these ions but not on the proposed mechanisms for their production nor on the proposed locations in the stellar atmosphere where they are abundant. Cassinelli et al. (1978) suggest that the Auger mechanism is operative in a cool wind blowing above a narrow corona to produce these ions; Lucy and White (1980) introduce radiative instabilities growing into hot blobs distributed across the stellar wind; Doazan and Thomas (1982) make these ions to be formed in both pre- and post-coronal, high temperature regions at low and high velocity respectively.


1977 ◽  
Vol 4 (2) ◽  
pp. 175-175
Author(s):  
Dimitri Mihalas

A brief summary of the current status of radiatively driven wind models for early-type stars is given. A critique of these models is made both on theoretical and observational grounds, and it is concluded that a pure radiatively driven wind is probably not a realistic approximation for 0-star winds. It is argued that probably the wind structure must have an initial high-temperature (“coronal”) region through which the trans-sonic flow takes place, followed by radiative accelerations to very high terminal velocities. Full details of the discussion can be found in Stellar Atmospheres, 2nd Edition, by D. Mihalas, to be published by W. H. Freeman and Company, San Francisco, in Fall 1977.


2006 ◽  
Vol 2 (S239) ◽  
pp. 103-112
Author(s):  
John D. Landstreet

AbstractConvection occurs in the visible photospheric layers of most stars having Te less than about 10000 K, and in some hotter stars. The solar granulation pattern is a symptom of this, as is the non-zero microturbulent velocity often required in abundance analysis to make both weak and strong lines yield the same abundance.In very sharp-lined stars, the presence of a non-thermal velocity field in the visible stellar atmosphere leads to several other effects which may be detected in spectral line profiles. These include radial velocities that vary systematically with equivalent width, distortions of the line profile as compared to a profile computed with a Voigt profile and rotational broadening (“macroturbulence”), and asymmetries with respect to the line centre (“bisector curvature”).Detection and interpretation of these effects, with the goal of obtaining empirical information about a velocity field present in the visible layers, requires comparison with calculated synthetic spectra which incorporate model velocity fields. Thus, this review will summarize some of the observational clues concerning photospheric velocity fields, as well as modelling aimed at interpreting these data.


Author(s):  
Yanjun Guo ◽  
Jiao Li ◽  
Jianping Xiong ◽  
Jiangdan Li ◽  
Luqian Wang ◽  
...  

Abstract Massive binaries play significant roles in many fields. Identification of massive stars, particularly massive binaries, is of great importance. In this paper, by adopting the technique of measuring the equivalent widths of several spectral lines, we identified 9,382 early-type stars from LAMOST medium-resolution survey and divided the sample into four groups, T1 ($\sim$O-B4), T2 ($\sim$B5), T3 ($\sim$B7), and T4 ($\sim$B8-A). The relative radial velocities $RV_{\rm rel}$ were calculated using the Maximum Likelihood Estimation. The stars with significant changes of $RV_{\rm rel}$ and at least larger than 15.57km s$^{-1}$ were identified as spectroscopic binaries. We found that the observed spectroscopic binary fractions for the four groups are $24.6\%\pm0.5\%$, $20.8\%\pm0.6\%$, $13.7\%\pm0.3\%$, and $7.4\%\pm0.3\%$, respectively. Assuming that orbital period ($P$) and mass ratio ($q$) have intrinsic distributions as $f(P) \propto P^\pi$ (1\textless$P$\textless1000 days) and $f(q) \propto q^\kappa$ (0.1\textless$q$\textless1), respectively, we conducted a series of Monte-Carlo simulations to correct observational biases for estimating the intrinsic multiplicity properties. The results show that the intrinsic binary fractions for the four groups are 68$\%\pm8\%$, 52$\%\pm3\%$, 44$\%\pm6\%$, and 44$\%\pm6\%$, respectively. The best estimated values for $\pi$ are -1$\pm0.1$, -1.1$\pm0.05$, -1.1$\pm0.1$, and -0.6$\pm0.05$, respectively. The $\kappa$ cannot be constrained for groups T1 and T2 and is -2.4$\pm0.3$ for group T3 and -1.6$\pm0.3$ for group T4. We confirmed the relationship of a decreasing trend in binary fractions towards late-type stars. No correlation between the spectral type and the orbital period distribution has been found yet, possibly due to the limitation of observational cadence.


Sign in / Sign up

Export Citation Format

Share Document