scholarly journals Heating of Intense Magnetic Flux Tubes by Magnetohydrodynamic Waves

1983 ◽  
Vol 102 ◽  
pp. 413-416
Author(s):  
Z. Musielak ◽  
E. Bielicz

Theoretical models of intense magnetic flux tubes embedded in the photospheres of late-type stars have been calculated. Magnetohydrodynamic waves generated in the convective zone are radiatively damped in the lower part of the flux tube and then dissipated. We discuss how the presence of flux tubes in stellar photospheres influences the temperature minimum and the chromospheric activity. We suggest a possible interpretation of the Wilson-Bappu effect in stars with strong chromospheric activity.

2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


2004 ◽  
Vol 219 ◽  
pp. 546-551
Author(s):  
T. Granzer ◽  
K. G. Strassmeier

We model thin magnetic flux tubes as they rise from the bottom of a stellar convection zone to the photosphere. On emergence they form active regions, i.e. star spots. This model was very successfully applied to the solar case, where the simulations where in agreement with the butterfly diagram, Joy's law, and Hale's law. We propose the use of a similar model to describe stellar activity in the more extreme form found on active stars. A comparison between Doppler-images of well-observed pre-MS stars and a theoretically derived probability of star-spot formation as a function of latitude is presented.


1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


1994 ◽  
Vol 154 ◽  
pp. 459-463
Author(s):  
M. Bünte ◽  
O. Steiner ◽  
S.K. Solanki ◽  
V.J. Pizzo

The interchange instability of solar magnetic flux tubes and possible stabilization mechanisms are reviewed. Special attention is paid to the influence of magnetic tension forces and the internal atmosphere, both of which were neglected in earlier studies of this instability. It is found that whirl flows with velocities of only 2.2 km s–1 are strong enough to stabilize the flux tubes. However, their absence or the excitation of other instabilities might lead to a shredding of the tubes. The observability of such a scenario in the infrared is briefly discussed.


2004 ◽  
Vol 219 ◽  
pp. 437-448
Author(s):  
Zdzislaw E. Musielak

To explain the heating of stellar chromospheres and transition regions, two classes of heating mechanisms have been considered: dissipation of acoustic and magnetic waves generated in stellar convection zones; and dissipation of currents generated by photospheric motions of surface magnetic fields. The focus of this paper is on the wave heating mechanisms and on recent results which demonstrate that theoretical models of stellar chromospheres based on the wave heating can explain the “basal flux” and the observed Ca II emission in most stars but cannot account for the observed Mg II emission in active stars. The obtained results clearly show that the base of stellar chromospheres is heated by acoustic waves, the heating of the middle and upper chromospheric layers is dominated by magnetic waves associated with magnetic flux tubes, and that other non-wave heating mechanisms are required to explain the structure of the highest layers of stellar chromospheres and transition regions.


2010 ◽  
Vol 6 (S273) ◽  
pp. 351-355
Author(s):  
Andrew Gascoyne ◽  
Rekha Jain

AbstractThe magnetohydrodynamic (MHD) sausage tube waves are excited in the magnetic flux tubes by p-mode forcing. These tube waves thus carry energy away from the p-mode cavity which results in the deficit of incident p-mode energy. We calculate the loss of incident p-mode energy as a damping rate of f- and p-modes. We calculate the damping rates of f- and p-modes by a model Sun consisting of an ensemble of many thin magnetic flux tubes with varying plasma properties and distributions. Each magnetic flux tube is modelled as axisymmetric, vertically oriented and untwisted. We find that the magnitude and the form of the damping rates are sensitive to the plasma-β of the tubes and the upper boundary condition used.


2009 ◽  
Vol 5 (H15) ◽  
pp. 351-351
Author(s):  
Elena A. Kirichek ◽  
Alexandr A. Solov'ev

In recent years, the local helioseismology has become a highly effective tool for investigating subphotospheric layers of the Sun, which can yield fairly detailed distributions of the subphotospheric temperatures and large-scale plasma flows based on the spectra of the oscillations observed at the photospheric layers and the observed peculiarities of propagation of magnetoacoustic waves in this medium (Zhao et al. (2001), Kosovichev (2006)). Unfortunately, the effects of temperature and the magnetic field on the wave propagation speed have not yet been separated Kosovichev (2006), so that the structure of the sunspot magnetic field in deep layers, beneath the photosphere, remains a subject of purely theoretical analysis. In his analysis of some theoretical models of the subphotospheric layers of sunspots based on recent helioseismological data, Kosovichev (2006) concluded that Parker's (“spaghetti”) cluster model Parker (1979) is most appropriate. In this model, the magnetic flux in the sunspot umbra is concentrated into separate, strongly compressed, vertical magnetic flux tubes that are interspaced with plasma that is almost free of magnetic field; the plasma can move between these tubes.


1994 ◽  
Vol 154 ◽  
pp. 407-421
Author(s):  
O Steiner

Two types of model calculations for small scale magnetic flux tubes in the solar atmosphere are reviewed. In the first kind, one follows the temporal evolution governed by the complete set of the MHD and radiative transfer equations to a (quasi) stationary solution. From such a solution the continuum contrasts of a photospheric flux tube in the visible and in the infrared continuum at 1.6 μm have been computed and are briefly discussed. The second, more empirical type of method assumes the flux tubes to be in magnetohydrostatic equilibrium. It is computationally faster and more flexible and allows us to explore a wide range of parameters. Models and insights obtained from such parameter studies are discussed in some detail. These include an explanation for the peculiar variation of the area asymmetry of Stokes V profiles across the solar disk in terms of mass motions in the surroundings of magnetic flux tubes.Furthermore, a two-dimensional model of the lower chromosphere that has been developed is presented. Emphasis is laid on the effect of thermal bifurcation of the lower chromosphere on the structure of the chromospheric magnetic field. If the cool carbon monoxide clouds, observed in the infrared, occupy the non-magnetic regions, the flux tubes expand very strongly and form a magnetic canopy with an almost horizontal base. This has consequences for the spatial distribution of the Ca II K spectral line emission.Finally, some consideration is given to the formation and destruction of intense magnetic flux tubes in the solar photosphere. The formation is described as a consequence of the flux expulsion process that leads to a convective instability. A possible observational signature of this mechanism is proposed.


2002 ◽  
Vol 9 (2) ◽  
pp. 163-172 ◽  
Author(s):  
N. V. Erkaev ◽  
V. A. Shaidurov ◽  
V. S. Semenov ◽  
H. K. Biernat

Abstract. Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.


Sign in / Sign up

Export Citation Format

Share Document