scholarly journals The Magellanic Stream and its Related Problems

1984 ◽  
Vol 108 ◽  
pp. 115-123 ◽  
Author(s):  
M. Fujimoto ◽  
T. Murai

A brief survey is made of recent 21-cm and optical observations of the Magellanic Stream(MS). The space orientation of the Magellanic Clouds is touched upon in relation to modelling the MS. After summarizing a variety of models for the MS, we show that if our Galaxy is massive with a huge dark halo, a tidal model is most suitable for reproducing its characteristic structure and high-negative radial velocity. Past orbits of the Large and the Small Magellanic Cloud (LMC and SMC) are determined uniquely for the last 2×109 yr, if we postulate that the LMC and SMC are bound together for 1010 yr: Highly-noncircular motion of the SMC around the LMC could give a clue to understand some peculiar features associated with the Magellanic Clouds.

1999 ◽  
Vol 186 ◽  
pp. 60-60
Author(s):  
A.M. Yoshizawa ◽  
M. Noguchi

The system of the Magellanic Clouds is considered to be dynamically interacting among themselves and with our Galaxy. This interaction is thought to be the cause of many complicated features seen in the Magellanic Clouds and the Magellanic Stream (see Westerlund 1990, A&AR, 2, 27). In order to better understand the formation and evolution of the Magellanic System, we carry out realistic N-body simulations of the tidal distortion of the Small Magellanic Cloud (SMC) due to our Galaxy and the Large Magellanic Cloud (LMC).


2016 ◽  
Vol 12 (S323) ◽  
pp. 223-226
Author(s):  
Devika Kamath ◽  
Hans Van Winckel ◽  
Peter Wood

AbstractIt is widely accepted that binary interactions are responsible for the shaping of planetary nebula. However, these binary interactions and evolutionary channels are poorly understood. Our recent study revealed a newly discovered population of low-luminosity, low-metallicity, likely binaries in the Magellanic Clouds: dusty post-RGB stars. They are likely to have evolved off the RGB via binary interaction. In this paper we present preliminary results of the first radial velocity monitoring of the post-RGB stars in the Small Magellanic Cloud (SMC) and the implications on stellar (binary) evolution. We also investigate their link, if any, to the planetary nebulae systems.


1991 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
B. E. Westerlund

A vast amount of observational data concerning the structure and kinematics of the Magellanic Clouds is now available. Many basic quantities (e.g. distances and geometry) are, however, not yet sufficiently well determined. Interactions between the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC) and our Galaxy have dominated the evolution of the Clouds, causing bursts of star formation which, together with stochastic self-propagating star formation, produced the observed structures. In the youngest generation in the LMC it is seen as an intricate pattern imitating a fragmented spiral structure. In the SMC much of the fragmentation is along the line of sight complicating the reconstruction of its history. The violent events in the past are also recognizable in complex velocity patterns which make the analysis of the kinematics of the Clouds difficult.


1998 ◽  
Vol 15 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Miroslav D. Filipović ◽  
Paul A. Jones ◽  
Graeme L. White ◽  
Raymond F. Haynes

AbstractWe present a comparison between the latest Parkes radio surveys (Filipović et al. 1995, 1996, 1997) and Hα surveys of the Magellanic Clouds (Kennicutt & Hodge 1986). We have found 180 discrete sources in common for the Large Magellanic Cloud (LMC) and 40 in the field of the Small Magellanic Cloud (SMC). Most of these sources (95%) are HII regions and supernova remnants (SNRs). A comparison of the radio and Hα flux densities shows a very good correlation and we note that many of the Magellanic Clouds SNRs are embedded in HII regions.


1991 ◽  
Vol 148 ◽  
pp. 401-406 ◽  
Author(s):  
Klaas S. De Boer

General aspects of ISM studies using absorption line studies are given and available data are reviewed. Topics are: galactic foreground gas, individual fields in the Magellanic Clouds (MCs) and MC coronae. Overall investigations are discussed. It is demonstrated that the metals in the gas of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are a factor of 3 and 10, respectively, in abundance below solar levels. The depletion pattern in the LMC is similar to that of the Milky Way.


1999 ◽  
Vol 193 ◽  
pp. 26-37 ◽  
Author(s):  
Virpi S. Niemela ◽  
Roberto Gamen ◽  
Nidia I. Morrell ◽  
Sixto Giménez Benítez

Observations of WR stars in binary systems are discussed, emphasizing constraints on our knowledge of the binary frequency of WR stars, and of WR stars as a distinctive class of objects. Radial velocity orbits of newly discovered binaries, e.g., WR 29, a short period WN7+OB binary in our Galaxy, and SMC/AB 7, a massive WN+O7 binary in the Small Magellanic Cloud, are presented. New spectroscopic observations of binary systems with previously known orbits are also reported, showing in the case of WR 21 evidence of change of the orbital elements as derived from different spectral lines. An elliptic orbit for CV Ser is also illustrated.


1991 ◽  
Vol 148 ◽  
pp. 161-164 ◽  
Author(s):  
S. van den Bergh

Star clusters in the Magellanic Clouds (MCs) differ from those in the Galaxy in a number of respects: (1) the Clouds contain a class of populous open clusters that has no Galactic counterpart; (2) Cloud clusters have systematically larger radii rh than those in the Galaxy; (3) clusters of all ages in the Clouds are, on average, more flattened than those in the Galaxy. In the Large Magellanic Cloud (LMC) there appear to have been two distinct epochs of cluster formation. LMC globulars have ages of 12-15 Gyr, whereas most populous open clusters have ages <5 Gyr. No such dichotomy is observed for clusters in the Small Magellanic Cloud (SMC) The fact that the SMC exhibits no enhanced cluster formation at times of bursts of cluster formation in the LMC, militates against encounters between the Clouds as a cause for enhanced rates of star and cluster formation.


Sign in / Sign up

Export Citation Format

Share Document