scholarly journals The Relic Radio Source B2 0924+30

1996 ◽  
Vol 175 ◽  
pp. 345-346
Author(s):  
U. Klein ◽  
K.-H. Mack ◽  
L. Gregorini ◽  
P. Parma

The double radio source B2 0924+30, associated with the luminous E/S0 galaxy IC2476, may be considered a prototypical genuine relic of a ‘dead’ radio galaxy as it seems to perfectly fulfill the following criteria: It has a rather steep overall radio spectrum (Ekers et al., 1981; Cordey, 1987). Its core luminosity is by far the lowest known so far (Giovannini et al., 1988). No coherent jet structure or other signs of activity are visible. Since only four possibly genuine relics of radio galaxies are known so far (Harris et al., 1993), a study of the archetypical source B2 0924+30 is of eminent importance for the understanding of this rare species of radio galaxies.

1982 ◽  
Vol 97 ◽  
pp. 115-116
Author(s):  
R. M. Price ◽  
J. A. Graham

Centaurus A, at an estimated distance of five megaparsecs, is the closest radio galaxy. It presents the best opportunity to examine in detail the physical mechanisms and resulting structures that are to be found in radio galaxies. Centaurus was first studied in detail at radio wavelengths by Cooper, Price and Cole (1965), hence CPC. Many of the comments, interpretations, and conclusions recorded in that paper remain valid today and provide the broader framework in which the more detailed studies using today's more powerful instrumentation can be understood. Historically, it is also interesting to note that Centaurus A was the first extragalactic radio source in which linear polarization and Faraday rotation were discovered and extensively studied.


2020 ◽  
Vol 638 ◽  
pp. A29
Author(s):  
M. Brienza ◽  
R. Morganti ◽  
J. Harwood ◽  
T. Duchet ◽  
K. Rajpurohit ◽  
...  

Context. Restarted radio galaxies represent a unique tool for investigating the duty cycle of the jet activity in active galactic nuclei (AGN). The radio galaxy 3C388 has long been claimed to be a peculiar example of an AGN with multi-epoch activity because it shows a very sharp discontinuity in the GHz spectral index distribution of its lobes. Aims. We present here for the first time a spatially resolved study of the radio spectrum of 3C388 down to MHz frequencies aimed at investigating the radiative age of the source and constraining its duty cycle. Methods. We used new low-frequency observations at 144 MHz performed with the Low Frequency Array and at 350 MHz performed with the Very Large Array that we combined with archival data at higher frequencies (614, 1400, and 4850 MHz). Results. We find that the spectral indices in the lower frequency range, 144−614 MHz, have flatter values (αlow ∼ 0.55−1.14) than those observed in the higher frequency range, 1400−4850 MHz, (αhigh ∼ 0.75−1.57), but they follow the same distribution across the lobes, with a systematic steepening towards the edges. However, the spectral shape throughout the source is not uniform and often deviates from standard models. This suggests that mixing of different particle populations occurs, although it remains difficult to understand whether this is caused by observational limitations (insufficient spatial resolution and/or projection effects) or by the intrinsic presence of multiple particle populations, which might be related to the two different outbursts. Conclusions. Using single-injection radiative models, we compute that the total source age is ≲80 Myr and that the duty cycle is about ton/ttot ∼ 60%, which is enough to prevent the intracluster medium from cooling, according to X-ray estimates. While to date the radio spectral distribution of 3C388 remains a rare case among radio galaxies, multi-frequency surveys performed with new-generation instruments will soon allow us to investigate whether more sources with the same characteristics exist.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Simona Giacintucci ◽  
Tracy Clarke ◽  
Namir E. Kassim ◽  
Wendy Peters ◽  
Emil Polisensky

We present VLA Low-band Ionosphere and Transient Experiment (VLITE) 338 MHz observations of the galaxy cluster CL 0838+1948. We combine the VLITE data with Giant Metrewave Radio Telescope 610 MHz observations and survey data. The central galaxy hosts a 250 kpc source whose emission is dominated by two large lobes at low frequencies. At higher frequencies, a pair of smaller lobes (∼30 kpc) is detected within the galaxy optical envelope. The observed morphology is consistent with a restarted radio galaxy. The outer lobes have a spectral index αout=1.6, indicating that they are old, whereas the inner lobes have αinn=0.6, typical for an active source. Spectral modeling confirms that the outer emission is a dying source whose nuclear activity switched off not more than 110 Myr ago. Using archival Chandra X-ray data, we compare the radio and hot gas emission. We find that the active radio source is contained within the innermost and X-ray brightest region, possibly a galactic corona. Alternatively, it could be the remnant of a larger cool core whose outer layers have been heated by the former epoch of activity that has generated the outer lobes.


1996 ◽  
Vol 175 ◽  
pp. 347-348
Author(s):  
L. Feretti ◽  
G. Giovannini ◽  
U. Klein ◽  
K.-H. Mack ◽  
L.G. Sijbring

We have performed sensitive observations of three classical head-tail radio galaxies at λ11.1, 6.3, and 2.8 cm using the Effelsberg 100-m telescope (Zech, 1994). Complete maps of the sources 3C129, NGC1265, and 3C465 were obtained, including the distributions of the linearly polarized intensity. Together with the low-frequency interferometric maps these allow a comprehensive study of their radio spectra and, based on models of particle losses, the derivations of particle ages across these sources. The highest frequency involved allows an unambiguous derivation of the projected magnetic field structure, unimpeded by Faraday effects. Here we focus on NGC1265, which is located in the Perseus Cluster.


2018 ◽  
Vol 14 (S342) ◽  
pp. 239-241
Author(s):  
A. Hirano ◽  
K. Fujisawa ◽  
K. Niinuma ◽  

AbstractWe have conducted VLBI monitoring observations for a radio galaxy 3C 84 to investigate how the pc scale jet structure changes over a long period. VERA, a VLBI observation network in Japan, was used for the observation. The C3 component of the jet has continuously moved toward the south from the core. The motion was, however, not straight, but it showed a bending of about 0.3 mas (0.1 pc) with a time scale of 500-1000 days. Two models explaining the bending, local brightness distribution change or real change of the jet traveling direction, are discussed.


2020 ◽  
Vol 635 ◽  
pp. A185 ◽  
Author(s):  
G. Principe ◽  
G. Migliori ◽  
T. J. Johnson ◽  
F. D’Ammando ◽  
M. Giroletti ◽  
...  

Context. According to radiative models, radio galaxies may produce γ-ray emission from the first stages of their evolution. However, very few such galaxies have been detected by the Fermi Large Area Telescope (LAT) so far. Aims. NGC 3894 is a nearby (z = 0.0108) object that belongs to the class of compact symmetric objects (CSOs, i.e., the most compact and youngest radio galaxies), which is associated with a γ-ray counterpart in the Fourth Fermi-LAT source catalog. Here we present a study of the source in the γ-ray and radio bands aimed at investigating its high-energy emission and assess its young nature. Methods. We analyzed 10.8 years of Fermi-LAT data between 100 MeV and 300 GeV and determined the spectral and variability characteristics of the source. Multi-epoch very long baseline array (VLBA) observations between 5 and 15 GHz over a period of 35years were used to study the radio morphology of NGC 3894 and its evolution. Results. NGC 3894 is detected in γ-rays with a significance >9σ over the full period, and no significant variability has been observed in the γ-ray flux on a yearly time-scale. The spectrum is modeled with a flat power law (Γ = 2.0 ± 0.1) and a flux on the order of 2.2 × 10−9 ph cm−2 s−1. For the first time, the VLBA data allow us to constrain with high precision the apparent velocity of the jet and counter-jet side to be βapp, NW = 0.132 ± 0.004 and βapp, SE = 0.065 ± 0.003, respectively. Conclusions. Fermi-LAT and VLBA results favor the youth scenario for the inner structure of this object, with an estimated dynamical age of 59 ± 5 years. The estimated range of viewing angle (10° < θ <  21°) does not exclude a possible jet-like origin of the γ-ray emission.


2019 ◽  
Vol 490 (1) ◽  
pp. 1363-1382 ◽  
Author(s):  
Michael D Smith ◽  
Justin Donohoe

ABSTRACT We explore the observational implications of a large systematic study of high-resolution three-dimensional simulations of radio galaxies driven by supersonic jets. For this fiducial study, we employ non-relativistic hydrodynamic adiabatic flows from nozzles into a constant pressure-matched environment. Synchrotron emissivity is approximated via the thermal pressure of injected material. We find that the morphological classification of a simulated radio galaxy depends significantly on several factors with increasing distance (i.e. decreasing observed resolution) and decreasing orientation often causing reclassification from FR II (limb-brightened) to FR I (limb-darkened) type. We introduce the Lobe or Limb Brightening Index (LBI) to measure the radio lobe type more precisely. The jet density also has an influence as expected with lower density leading to broader and bridged lobe morphologies as well as brighter radio jets. Hence, relating observed source type to the intrinsic jet dynamics is not straightforward. Precession of the jet direction may also be responsible for wide relaxed sources with lower LBI and FR class as well as for X-shaped and double–double structures. Helical structures are not generated because the precession is usually too slow. We conclude that distant radio galaxies could appear systematically more limb darkened due to merger-related redirection and precession as well as due to the resolution limitation.


Sign in / Sign up

Export Citation Format

Share Document