scholarly journals Summary-Introduction

1960 ◽  
Vol 12 ◽  
pp. 403-415
Author(s):  
A. B. Severny

Speaking on localized velocity fields on the Sun, we mean the velocity fields in active regions on the disk. The experimental data used to picture these fields are based mainly on 1) the observations of Doppler shifts of spectral lines, 2) the form (asymmetry) of line profiles, 3) moving picture process in monochromatic, mainly Hα and H or K, light. However the big skin-time of solar plasma makes these data insufficient to get an adequate and complete idea about the motions in active regions, and we must also take into account the available observational data about magnetic fields in these regions. Somewhere the state of affairs permits one to disregard the possible influence of magnetic fields on the picture of velocity fields But these occasions are comparatively rare, because the main source of solar activity is closely, but in a not quite recognized way, connected with magnetic activity of the Sun. This is why we should in our talk consider as closely as possible both subjects—the motions in active regions and their magnetic fields. The best illustrations of the necessity of such a mode of consideration are the velocity fields in sunspots.

1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


2008 ◽  
Vol 4 (S259) ◽  
pp. 147-158
Author(s):  
Alexander G. Kosovichev

AbstractAdvances in helioseismology provide new knowledge about the origin of solar magnetic activity. The key questions addressed by helioseismology are: what is the physical mechanism of the solar dynamo, how deep inside the Sun are the magnetic fields generated, how are they transported to the surface and form sunspots? Direct helioseismic signatures of the internal magnetic fields are weak and difficult to detect. Therefore, most of the information comes from observations of dynamical effects caused by the magnetic fields. I review results of recent helioseismic observations of the magnetohydrodynamics of the solar interior on various scales, including global dynamics associated with the dynamo processes, and formation of sunspots and active regions.


1990 ◽  
Vol 138 ◽  
pp. 281-295
Author(s):  
V. I. Makarov ◽  
K. R. Sivaraman

The main features concerning the evolution of the large scale photospheric magnetic fields derived from synoptic maps as well as from H-alpha synoptic charts are reviewed. The significance of a variety of observations that indicate the presence of a high latitude component as a counterpart to the sunspot phenomenon at lower latitudes is reviewed. It is argued that these two components describe the global magnetic field on the sun. It is demonstrated that this scenario is able to link many phenomena observed on the sun (coronal emission, ephemeral active regions, geomagnetic activity, torsional oscillations, polar faculae and global modes in the magnetic field pattern) with the global magnetic activity.


2010 ◽  
Vol 6 (S273) ◽  
pp. 56-60 ◽  
Author(s):  
Mikhail Demidov

AbstractThe best way to test the stellar magnetic field mapping codes is to apply them, with some changes, to the Sun, where high-precision disk-integrated and disk-resolved observations are available for a long time. Data sets of the full-disk magnetograms and the solar mean magnetic fields (SMMF) measurements are provided, for example, by the J.M.Wilcox Solar observatory (WSO) and by the Sayan Solar observatory (SSO). In the second case the measurements in the Stokes-meter mode simultaneously in many spectral lines are available. This study is devoted to analysis of the SSO quasi-simultaneous full-disk magnetograms and SMMF measurements. Changes of the SMMF signal with rotation of the surface large-scale magnetic fields are demonstrated. Besides, by deleting of selected pixels with active regions (AR) from the maps their contribution to the integrated SMMF signal is evaluated. It is shown that in some cases the role of AR can be rather significant.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1994 ◽  
Vol 144 ◽  
pp. 619-624 ◽  
Author(s):  
K. Wilhelm ◽  
W. Curdt ◽  
A. H. Gabriel ◽  
M. Grewing ◽  
M. C. E. Huber ◽  
...  

AbstractThe experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of extreme ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy; provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature range from 104to more than 1.8 x 106K. The spatial and spectral resolution capabilities of the instrument will be considered in this contribution in some detail, and a new detector concept will be introduced.


The Sun’s magnetic activity varies cyclically, with a well-defined mean period of about 11 years. At the beginning of a new cycle, spots appear at latitudes around ±30°; then the zones of activity expand and drift towards the equator, where they die away as the new cycle starts again at higher latitudes. Active regions are typically oriented parallel to the equator, with oppositely directed magnetic fields in leading and following regions. The sense of these fields is opposite in the two hemispheres and reverses at sunspot minimum. So the magnetic cycle has a 22-year period, with waves of activity that drift towards the equator. Sunspot records show that there was a dearth of spots in the late 17th century - the Maunder minimum - which can also be detected in proxy records.


1998 ◽  
Vol 167 ◽  
pp. 415-418
Author(s):  
Kirill M. Kuzanyan

AbstractThe main magnetic activity of the Sun can be visualised by Maunder butterfly diagrams which represent the spatio-temporal distribution of sunspots. Besides sunspots there are other tracers of magnetic activity, like filaments and active regions, which are observable over a wider latitudinal range of the Sun. Both these phenomena allow one to consider a complete picture of solar magnetic activity, which should be explained in the framework of one relatively simple model.A kinematic αѡ-dynamo model of the magnetic field’s generation in a thin convection shell with nonuniform helicity for large dynamo numbers is considered in the framework of Parker’s migratory dynamo. The obtained asymptotic solution of equations governing the magnetic field has a form of a modulated travelling dynamo wave. This wave propagates over the most latitudes of the solar hemisphere equatorwards, and the amplitude of the magnetic field first increases and then decreases with the propagation. Over the subpolar latitudes the dynamo wave reverses, there the dynamo wave propagates polewards and decays with latitude. Butterfly diagrams are plotted and analyzed.There is an attractive opportunity to develop a more quantitatively precise model taking into account helioseismological data on differential rotation and fitting the solar observational data on the magnetic field and turbulence, analyzing the helicity and the phase shift between toroidal and poloidal components of the field.


1991 ◽  
Vol 130 ◽  
pp. 266-267
Author(s):  
I. Sattarov ◽  
A. Hojaev

The most widely used indicator of the stellar magnetic activity is the flux in the CaII K-line core (K-index) (Baliunas and Vaughan, 1985). The K-index data have also been used for measuring the rotation of stars. But using the method for the Sun gives different results (Keil and Worden, 1984; Singh and Livingston, 1987). The reason for the observed differences, besides those indicated by Singh and Livingston, may be the character of the distribution of active regions. This study is based on observations made at Tashkent Astronomical Observatory and the data published in SGD for solar cycle 21. We study the longitudional distribution of sunspots and plages. Some intervals of active longitudes (IAL) were selected and the evolution of them was studied. Active regions were found to concentrate in certain longitude intervals which are in nearly rigid rotation. Fig. 1 shows the longitudinal distribution of sunspots areas for 1983-84, as an example.


2017 ◽  
Vol 35 (4) ◽  
pp. 805-816 ◽  
Author(s):  
Eric Priest

Abstract. This lecture summarises how our understanding of many aspects of the Sun has been revolutionised over the past few years by new observations and models. Much of the dynamic behaviour of the Sun is driven by the magnetic field since, in the outer atmosphere, it represents the largest source of energy by far. The interior of the Sun possesses a strong shear layer at the base of the convection zone, where sunspot magnetic fields are generated. A small-scale dynamo may also be operating near the surface of the Sun, generating magnetic fields that thread the lowest layer of the solar atmosphere, the turbulent photosphere. Above the photosphere lies the highly dynamic fine-scale chromosphere, and beyond that is the rare corona at high temperatures exceeding 1 million degrees K. Possible magnetic mechanisms for heating the corona and driving the solar wind (two intriguing and unsolved puzzles) are described. Other puzzles include the structure of giant flux ropes, known as prominences, which have complex fine structure. Occasionally, they erupt and produce huge ejections of mass and magnetic fields (coronal mass ejections), which can disrupt the space environment of the Earth. When such eruptions originate in active regions around sunspots, they are also associated with solar flares, in which magnetic energy is converted to kinetic energy, heat and fast-particle energy. A new theory will be presented for the origin of the twist that is observed in erupting prominences and for the nature of reconnection in the rise phase of an eruptive flare or coronal mass ejection.


Sign in / Sign up

Export Citation Format

Share Document