scholarly journals New series of rigid and non rigid Earth nutation. Comparison with observations

1996 ◽  
Vol 172 ◽  
pp. 239-242
Author(s):  
J. Souchay

After analysing the recent developments of the theory of the nutation for a simplified rigid Earth model (Kinoshita and Souchay, 1990) with new corrections and new contributions (Williams, 1994; Souchay and Kinoshita, 1996), we will study the effect of these developments on the calculation of the coefficients of nutation for a non rigid Earth model, based on the transfer function given by Wahr (1979). The relative improvements characterized by the residuals with the observations are explained in the following.

2000 ◽  
Vol 180 ◽  
pp. 190-195
Author(s):  
J. Souchay

AbstractDespite the fact that the main causes of the differences between the observed Earth nutation and that derived from analytical calculations come from geophysical effects associated with nonrigidity (core flattening, core-mantle interactions, oceans, etc…), efforts have been made recently to compute the nutation of the Earth when it is considered to be a rigid body, giving birth to several “rigid Earth nutation models.” The reason for these efforts is that any coefficient of nutation for a realistic Earth (including effects due to nonrigidity) is calculated starting from a coefficient for a rigid-Earth model, using a frequency-dependent transfer function. Therefore it is important to achieve high quality in the determination of rigid-Earth nutation coefficients, in order to isolate the nonrigid effects still not well-modeled.After reviewing various rigid-Earth nutation models which have been established recently and their relative improvement with respect to older ones, we discuss their specifics and their degree of agreement.


2021 ◽  
Vol 13 (4) ◽  
pp. 2031
Author(s):  
Fabio Grandi ◽  
Riccardo Karim Khamaisi ◽  
Margherita Peruzzini ◽  
Roberto Raffaeli ◽  
Marcello Pellicciari

Product and process digitalization is pervading numerous areas in the industry to improve quality and reduce costs. In particular, digital models enable virtual simulations to predict product and process performances, as well as to generate digital contents to improve the general workflow. Digital models can also contain additional contents (e.g., model-based design (MBD)) to provide online and on-time information about process operations and management, as well as to support operator activities. The recent developments in augmented reality (AR) offer new specific interfaces to promote the great diffusion of digital contents into industrial processes, thanks to flexible and robust applications, as well as cost-effective devices. However, the impact of AR applications on sustainability is still poorly explored in research. In this direction, this paper proposed an innovative approach to exploit MBD and introduce AR interfaces in the industry to support human intensive processes. Indeed, in those processes, the human contribution is still crucial to guaranteeing the expected product quality (e.g., quality inspection). The paper also analyzed how this new concept can benefit sustainability and define a set of metrics to assess the positive impact on sustainability, focusing on social aspects.


1973 ◽  
Vol 63 (3) ◽  
pp. 937-958
Author(s):  
Anton Ziolkowski

abstract Approximately half the noise observed by long-period seismometers at LASA is nonpropagating; that is, it is incoherent over distances greater than a few kilometers. However, because it is often strongly coherent with microbarograph data recorded at the same site, a large proportion of it can be predicted by convolving the microbarogram with some transfer function. The reduction in noise level using this technique can be as high as 5 db on the vertical seismometer and higher still on the horizontals. If the source of this noise on the vertical seismogram were predominantly buoyancy, the transfer function would be time-invariant. It is not. Buoyancy on the LASA long-period instruments is quite negligible. The noise is caused by atmospheric deformation of the ground and, since so much of it can be predicted from the output of a single nearby microbarograph, it must be of very local origin. The loading process may be adequately described by the static deformation of a flat-earth model; however, for the expectation of the noise to be finite, it is shown that the wave number spectrum of the pressure distribution must be band-limited. An expression for the expected noise power is derived which agrees very well with observations and predicts the correct attenuation with depth. It is apparent from the form of this expression why it is impossible to obtain a stable transfer function to predict the noise without an array of microbarographs and excessive data processing. The most effective way to suppress this kind of noise is to bury the seismometer: at 150 m the reduction in noise level would be about 10 db.


Author(s):  
Aimee S. Morgans ◽  
Ann P. Dowling

Model-based control has been successfully implemented on an atmospheric pressure lean premixed combustion rig. The rig incorporated a pressure transducer in the combustor to provide a sensor measurement, with actuation provided by a fuel valve. Controller design was based on experimental measurement of the open loop transfer function. This was achieved using a valve input signal which was the sum of an identification signal and a control signal from an empirical controller to eliminate the non-linear limit cycle. The transfer function was measured for the main instability occurring at a variety of operating conditions, and was found to be fairly similar in all cases. Using Nyquist and H∞-loop shaping techniques, several robust controllers were designed, based on a mathematical approximation to the measured transfer function. These were implemented experimentally on the rig, and were found to stabilise it under a variety of operating conditions, with a greater reduction in the pressure spectrum than had been achieved by the empirical controller.


1980 ◽  
Vol 78 ◽  
pp. 117-124 ◽  
Author(s):  
D. D. McCarthy ◽  
P. K. Seidelmann ◽  
T. C. Van Flandern

Commission 4 of the International Astronomical Union has deferred the question of revisions to the constants and theory of nutation in anticipation that there might be recommendations from Symposium No. 78 in Kiev. The present rigid-Earth theory of nutation does not adequately represent current precise astronomical observations for the major nutation terms. Discrepancies between the presently adopted theory and observations can accumulate to 0″1 in right ascension and significantly affect the determination of UT1 and materially influence the derivation of the new fundamental catalog of star positions and proper motions, FK5 There appears to be no obvious choice for a non-rigid-Earth model at present. The analysis of solid-Earth tides shows nutation coefficients in substantial agreement with astronomical observations and these values have been used in the reduction of radio interferometric and laser ranging observations. In the absence of a non-rigid-Earth model which can satisfy all requirements it is suggested that the coefficients found from the investigation of solid-Earth tides be adopted as a working standard until such a model can be adopted as a basis for nutation.


2010 ◽  
Vol 173 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Hiroki Ishikawa ◽  
Ryoko Komaki ◽  
Haruo Naitoh ◽  
Akira Yamaba ◽  
Hiroki Katoh

Sign in / Sign up

Export Citation Format

Share Document