scholarly journals Formation and Evolution of Disk Galaxies

1999 ◽  
Vol 183 ◽  
pp. 153-153
Author(s):  
C. Firmani ◽  
V. Avila-Reese

We have developed a semianalitical approach to study galaxy formation and evolution in the cosmological context. Disk galaxies (dark matter halo+luminous disk) are considered to be formed through an extended process of gravitational collapse, whose character is determined by the statistical properties of the density fluctuation field assumed here to be Gaussian. Gas disks in centrifugal equilibrium within the collapsing dark halos are built up (detailed angular momentum conservation is assumed), and their galactic evolution is calculated with a model which consider all the gravitational interactions, the hydrodynamics of the ISM, and the SF process. A bulge as product of stellar disk gravitational instabilities is constructed. To study general behaviors a Gaussian σ8 = 1 SCDM model is used. For a given mass one obtains a range of dark matter configurations. The average case is in excellent agreement with results of cosmological N-body simulations. The slope of the mass-velocity relation agrees with the slope of the H- and I-band Tully-Fisher relations, but the velocities are too high. This problem dissapears if the power spectrum is renormalized to σ8 = 0.57, suggesting that the TF relation is result of the natural extension to galactic scales of the galaxy distribution power spectrum, and that on the basis of its origin are the cosmological initial conditions. The scatter on the mass-velocity relation is realistic. The models predict disk exponential surface brightness (SB) profiles, nearly flat rotation curves, and negative radial gradients in the B-V color. The obtained, gas fractions, B-V colors, central SBs μB0, bulge-to-disk (b/d) ratios, and rotation velocities (for σ8 = 0.57) are in agreement with observations, and their correlations are similar to those which define the Hubble sequence, including the LSB galaxies. These properties and correlations are the product of the combination of three fundamental physical factors: the mass, the mass aggregation history (MAH), and the initial angular momentum. The intensive properties are almost invariant to the mass, the MAH determines the B-V color, and the spin parameter λ mainly influences on μB0, and b/d ratio.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 743-743
Author(s):  
Dong-Biao Kang

AbstractA self-gravitating system usually shows a quasi-universal density profile, such as the NFW profile of a simulated dark matter halo, the flat rotation curve of a spiral galaxy, the Sérsic profile of an elliptical galaxy, the King profile of a globular cluster and the exponential law of the stellar disk. It will be interesting if all of the above can be obtained from first principles. Based on the original work of White & Narayan (1987), we propose that if the self-bounded system is divided into infinite infinitesimal subsystems, the entropy of each subsystem can be maximized, but the whole system's gravity may just play the role of the wall, which may not increase the whole system's entropy St, and finally St may be the minimum among all of the locally maximized entropies (He & Kang 2010). For spherical systems with isotropic velocity dispersion, the form of the equation of state will be a hybrid of isothermal and adiabatic (Kang & He 2011). Hence this density profile can be approximated by a truncated isothermal sphere, which means that the total mass must be finite and our results can be consistent with observations (Kang & He 2011b). Our method requires that the mass and energy should be conserved, so we only compare our results with simulations of mild relaxation (i.e. the virial ratio is close to -1) of dissipationless collapse (Kang 2014), and the fitting also is well. The capacity can be calculated and is found not to be always negative as in previous works, and combining with calculations of the second order variation of the entropy, we find that the thermodynamical stability still can be true (Kang 2012) if the temperature tends to be zero. However, the cusp in the center of dark matter halos can not be explained, and more works will continue.The above work can be generalized to study the radial distribution of the disk (Kang 2015). The energy constraint automatically disappears in our variation, because angular momentum is much more important than energy for the disk-shape system. To simplify this issue, a toy model is taken: 2D gravity is adopted, then at large scale it will be consistent with a flat rotation curve; the bulge and the stellar disk are studied together. Then with constraints of mass and angular momentum, the calculated surface density can be consistent with the truncated, up-bended or standard exponential law. Therefore the radial distribution of the stellar disk may be determined by both the random and orbital motions of stars. In our fittings the central gravity is set to be nonzero to include the effect of asymmetric components.


2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.


2019 ◽  
Vol 492 (2) ◽  
pp. 1869-1886 ◽  
Author(s):  
Christopher Duckworth ◽  
Rita Tojeiro ◽  
Katarina Kraljic

ABSTRACT We use a combination of data from the MaNGA survey and MaNGA-like observations in IllustrisTNG100 to determine the prevalence of misalignment between the rotational axes of stars and gas. This census paper outlines the typical characteristics of misaligned galaxies in both observations and simulations to determine their fundamental relationship with morphology and angular momentum. We present a sample of ∼4500 galaxies from MaNGA with kinematic classifications which we use to demonstrate that the prevalence of misalignment is strongly dependent on morphology. The misaligned fraction sharply increases going to earlier morphologies (28 ± 3 per cent of 301 early-type galaxies, 10 ± 1 per cent of 677 lenticulars, and 5.4 ± 0.6 per cent of 1634 pure late-type galaxies). For early-types, aligned galaxies are less massive than the misaligned sample whereas this trend reverses for lenticulars and pure late-types. We also find that decoupling depends on group membership for early-types with centrals more likely to be decoupled than satellites. We demonstrate that misaligned galaxies have similar stellar angular momentum to galaxies without gas rotation, much lower than aligned galaxies. Misaligned galaxies also have a lower gas mass than the aligned, indicative that gas loss is a crucial step in decoupling star–gas rotation. Through comparison to a mock MaNGA sample, we find that the strong trends with morphology and angular momentum hold true in IllustrisTNG100. We demonstrate that the lowered angular momentum is, however, not a transient property and that the likelihood of star–gas misalignment at $z$ = 0 is correlated with the spin of the dark matter halo going back to $z$ = 1.


2003 ◽  
Vol 208 ◽  
pp. 391-392
Author(s):  
Andreea S. Font ◽  
Julio F. Navarro

We investigate recent suggestions that substructure in cold dark matter (CDM) halos has potentially destructive effects on galactic disks. N-body simulations of disk/bulge models of the Milky Way, embedded in a dark matter halo with substructure similar to that found in cosmological simulations, show that tides from substructure halos play only a minor role in the dynamical heating of the stellar disk. This suggests that substructure might not preclude CDM halos from being acceptable hosts of thin stellar disks.


2019 ◽  
Vol 488 (4) ◽  
pp. 4801-4815 ◽  
Author(s):  
Fangzhou Jiang ◽  
Avishai Dekel ◽  
Omer Kneller ◽  
Sharon Lapiner ◽  
Daniel Ceverino ◽  
...  

ABSTRACT The similarity between the distributions of spins for galaxies (λgal) and for dark-matter haloes (λhalo), indicated both by simulations and observations, is naively interpreted as a one-to-one correlation between the spins of a galaxy and its host halo. This is used to predict galaxy sizes in semi-analytic models via Re ≃ fjλhaloRvir, where Re is the half-mass radius of the galaxy, fj is the angular momentum retention factor, and Rvir is the halo radius. Using two suites of zoom-in cosmological simulations, we find that λgal and the λhalo of its host halo are in fact barely correlated, especially at z ≥ 1, in line with previous indications. Since the spins of baryons and dark matter are correlated at accretion into Rvir, the null correlation in the end reflects an anticorrelation between fj and λhalo, which can arise from mergers and a ‘wet compaction’ phase that many high-redshift galaxies undergo. It may also reflect that unrepresentative small fractions of baryons are tapped to the galaxies. The galaxy spin is better correlated with the spin of the inner halo, but this largely reflects the effect of the baryons on the halo. While λhalo is not a useful predictor for Re, our simulations reproduce a general relation of the form of Re = ARvir, in agreement with observational estimates. We find that the relation becomes tighter with A = 0.02(c/10)−0.7, where c is the halo concentration, which in turn introduces a dependence on mass and redshift.


2014 ◽  
Vol 10 (S309) ◽  
pp. 349-349
Author(s):  
Adelheid Teklu ◽  
Rhea-Silvia Remus ◽  
Klaus Dolag ◽  
Andreas Burkert

AbstractIn the context of the formation of spiral galaxies the evolution and distribution of the angular momentum of dark matter halos have been discussed for more than 20 years, especially the idea that the specific angular momentum of the halo can be estimated from the specific angular momentum of its disk (e.g. Fall & Efstathiou (1980), Fall (1983) and Mo et al. (1998)). We use a new set of hydrodynamic cosmological simulations called Magneticum Pathfinder which allow us to split the galaxies into spheroidal and disk galaxies via the circularity parameter ϵ, as commonly used (e.g. Scannapieco et al. (2008)). Here, we focus on the dimensionless spin parameter λ = J |E|1/2 / (G M5/2) (Peebles 1969, 1971), which is a measure of the rotation of the total halo and can be fitted by a lognormal distribution, e.g. Mo et al. (1998). The spin parameter allows one to compare the relative angular momentum of halos across different masses and different times. Fig. 1 reveals a dichotomy in the distribution of λ at all redshifts when the galaxies are split into spheroids (dashed) and disk galaxies (dash-dotted). The disk galaxies preferentially live in halos with slightly larger spin parameter compared to spheroidal galaxies. Thus, we see that the λ of the whole halo reflects the morphology of its central galaxy. For more details and a larger study of the angular momentum properties of disk and spheroidal galaxies, see Teklu et al. (in prep.).


1988 ◽  
Vol 130 ◽  
pp. 552-552
Author(s):  
A. F. Heavens ◽  
J. A. Peacock

We have calculated the growth of angular momentum about local density maxima at early epochs. We find that high peaks experience higher torques than low peaks, counteracting the short collapse time during which the high peaks can acquire angular momentum. Which effect is dominant depends on the perturbation power spectrum: for power spectra characteristic of both cold dark matter and hot dark matter, the effects nearly cancel, and the total angular momentum acquired by a collapsing object is almost independent of the height of the peak. Furthermore, the distributions of angular momenta acquired by collapsing protosystems are extremely broad, for all power spectra, far exceeding any modest differences between peaks of different height.These results indicate that it is not possible to account for the systematic differences in angular momentum properties of disk and elliptical galaxies simply by postulating that the latter arise from fluctuations of greater overdensity, contrary to some recent suggestions. The figure shows the probability distributions for the final angular momentum acquired by peaks of dimensionless height 1–4, for a power spectrum similar to cold dark matter. A fuller account of this work has been submitted to MNRAS.


2019 ◽  
Vol 485 (2) ◽  
pp. 2407-2416 ◽  
Author(s):  
Lehman H Garrison ◽  
Daniel J Eisenstein

ABSTRACT We present a method for generating suites of dark matter halo catalogues with only a few N-body simulations, focusing on making small changes to the underlying cosmology of a simulation with high precision. In the context of blind challenges, this allows us to re-use a simulation by giving it a new cosmology after the original cosmology is revealed. Starting with full N-body realizations of an original cosmology and a target cosmology, we fit a transfer function that displaces haloes in the original so that the galaxy/HOD power spectrum matches that of the target cosmology. This measured transfer function can then be applied to a new realization of the original cosmology to create a new realization of the target cosmology. For a 1 per cent change in σ8, we achieve 0.1 per cent accuracy to $k = 1\, h\, \mathrm{Mpc}^{-1}$ in the real-space power spectrum; this degrades to 0.3 per cent when the transfer function is applied to a new realization. We achieve similar accuracy in the redshift-space monopole and quadrupole. In all cases, the result is better than the sample variance of our $1.1\, h^{-1}\, \mathrm{Gpc}$ simulation boxes.


2020 ◽  
Vol 496 (3) ◽  
pp. 3996-4016
Author(s):  
Andrea Kulier ◽  
Gaspar Galaz ◽  
Nelson D Padilla ◽  
James W Trayford

ABSTRACT We investigate the formation and properties of low surface brightness galaxies (LSBGs) with M* > 109.5 M⊙ in the eagle hydrodynamical cosmological simulation. Galaxy surface brightness depends on a combination of stellar mass surface density and mass-to-light ratio (M/L), such that low surface brightness is strongly correlated with both galaxy angular momentum (low surface density) and low specific star formation rate (high M/L). This drives most of the other observed correlations between surface brightness and galaxy properties, such as the fact that most LSBGs have low metallicity. We find that LSBGs are more isolated than high-surface-brightness galaxies (HSBGs), in agreement with observations, but that this trend is driven entirely by the fact that LSBGs are unlikely to be close-in satellites. The majority of LSBGs are consistent with a formation scenario in which the galaxies with the highest angular momentum are those that formed most of their stars recently from a gas reservoir co-rotating with a high-spin dark matter halo. However, the most extended LSBG discs in EAGLE, which are comparable in size to observed giant LSBGs, are built up via mergers. These galaxies are found to inhabit dark matter haloes with a higher spin in their inner regions (<0.1r200c), even when excluding the effects of baryonic physics by considering matching haloes from a dark-matter-only simulation with identical initial conditions.


2020 ◽  
Vol 634 ◽  
pp. A122
Author(s):  
Ewa L. Łokas

By using N-body and hydro simulations, we study the formation and evolution of bars in galaxies with significant gas content focusing on the phenomenon of the buckling instability. The galaxies are initially composed of a spherical dark matter halo and only stellar, or stellar and gaseous, disks with parameters that are similar to the Milky Way and are evolved for 10 Gyr. We consider different values of the gas fraction f = 0−0.3 and in order to isolate the effect of the gas, we kept the fraction constant during the evolution by not allowing the gas to cool and form stars. The stellar bars that form in simulations with higher gas fractions are weaker and shorter, and they do not form at all for gas fractions that are higher than 0.3. The bar with a gas fraction of 0.1 forms sooner due to initial perturbations in the gas, but despite the longer evolution, it does not become stronger than the one in the collisionless case at the end of evolution. The bars in the gas component are weaker; they reach their maximum strength around 4 Gyr and later decline to transform into spheroidal shapes. The distortion of the stellar bar during the buckling instability is weaker for higher gas fractions and weakens the bar less significantly, but it has a similar structure both in terms of radial profiles and in face-on projections. For f = 0.2, the first buckling lasts significantly longer and the bar does not undergo the secondary buckling event, while for f = 0.3, the buckling does not occur. Despite these differences, all bars develop boxy/peanut shapes in the stellar and gas component by the end of the evolution, although their thickness is smaller for higher gas fractions.


Sign in / Sign up

Export Citation Format

Share Document