scholarly journals 7Li in Metal-Poor Stars: The Spread of the Li Plateau

2000 ◽  
Vol 198 ◽  
pp. 249-258
Author(s):  
Sean G. Ryan

A highly homogeneous study of 23 halo field dwarf stars has achieved a Li abundance accuracy of 0.033 dex per star. The work shows that the intrinsic spread of the Li abundances of these stars at a given metallicity is < 0.02 dex, and consistent with zero. That is, the Spite Li plateau for halo field dwarfs is incredibly thin. The thinness rules out depletion by more than 0.1 dex by a rotational-induced extra-mixing mechanism. Despite the thinness of the plateau, an increase of Li with [Fe/H] is seen, interpreted as evidence of Galactic chemical evolution (GCE) of Li, primarily due to Galactic cosmic ray (GCR) spallation reactions in the era of halo formation. The rate of Li evolution is concordant with: (1) observations of spallative 6Li in halo dwarfs; (2) GCE models; and (3) data on Li in higher metallicity halo stars. New data have also revealed four new ultra-Li-deficient halo dwarfs, doubling the number known. Based on their propensity to cluster at the halo main sequence turnoff and also to exist redward of the turnoff, we hypothesise that they are the products of binary mergers that ultimately will become blue stragglers. We explain their low Li abundances by normal pre-main-sequence (and possibly main-sequence) destruction in the low mass stars prior to their merging. If this explanation is correct, then such stars need no longer be considered an embarrassment to the existence of negligible Li destruction in the majority of field halo dwarfs.

1998 ◽  
Vol 188 ◽  
pp. 220-221
Author(s):  
N.S. Schulz ◽  
J.H. Kastner

Observations with the Einstein Observatory indicated that stellar X-ray activity diminishes in clusters older than 70 Myr (Pleiades). ROSAT observations of older clusters also support this result (see Caillault 1995 and references therein). The timescales over which young stars diminish in X-ray luminosity depends on spectral type (Randich et al. 1996), leading to the conclusion that X-ray activity in late type PMS depends on age and stellar mass. F and G-stars approach the main sequence much faster and the diminishing rates of X-ray activity from F to M stars start to differ considerably. Kastner et al. (1997) observed that the mean of the ratio Lx/Lbol for K and M dwarf stars increases monotonically for low-mass stars from the very early T Tauri stage through the age of the Pleiades cluster, reflecting the contraction and spin-up of such stars during pre-main sequence evolution. This ratio then decreases towards middle aged stars, as late-type main sequence stars spin down. Here we extend this result by including more distant clusters that are younger overall than those considered by Kastner et al. and also including earlier spectral types.


2018 ◽  
Vol 68 (1) ◽  
pp. 377-404 ◽  
Author(s):  
Vincent Tatischeff ◽  
Stefano Gabici

In this review, we first reassess the supernova remnant paradigm for the origin of Galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light-element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured beryllium abundances in old halo stars of low metallicity with the standard model of the Galactic cosmic-ray origin. We then discuss the various cosmic-ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. It seems to us that, among all possibilities, the superbubble model provides the most satisfactory explanation for these observations.


2018 ◽  
Vol 617 ◽  
pp. A6 ◽  
Author(s):  
K. J. Bell ◽  
I. Pelisoli ◽  
S. O. Kepler ◽  
W. R. Brown ◽  
D. E. Winget ◽  
...  

Context. The nature of the recently identified “sdA” spectroscopic class of stars is not well understood. The thousands of known sdAs have H-dominated spectra, spectroscopic surface gravity values between main sequence stars and isolated white dwarfs, and effective temperatures below the lower limit for He-burning subdwarfs. Most are likely products of binary stellar evolution, whether extremely low-mass white dwarfs and their precursors or blue stragglers in the halo. Aims. Stellar eigenfrequencies revealed through time series photometry of pulsating stars sensitively probe stellar structural properties. The properties of pulsations exhibited by sdA stars would contribute substantially to our developing understanding of this class. Methods. We extend our photometric campaign to discover pulsating extremely low-mass white dwarfs from the McDonald Observatory to target sdA stars classified from SDSS spectra. We also obtain follow-up time series spectroscopy to search for binary signatures from four new pulsators. Results. Out of 23 sdA stars observed, we clearly detect stellar pulsations in 7. Dominant pulsation periods range from 4.6 min to 12.3 h, with most on timescales of approximately one hour. We argue specific classifications for some of the new variables, identifying both compact and likely main sequence dwarf pulsators, along with a candidate low-mass RR Lyrae star. Conclusions. With dominant pulsation periods spanning orders of magnitude, the pulsational evidence supports the emerging narrative that the sdA class consists of multiple stellar populations. Since multiple types of sdA exhibit stellar pulsations, follow-up asteroseismic analysis can be used to probe the precise evolutionary natures and stellar structures of these individual subpopulations.


2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


1992 ◽  
Vol 9 ◽  
pp. 643-645
Author(s):  
G. Fontaine ◽  
F. Wesemael

AbstractIt is generally believed that the immediate progenitors of most white dwarfs are nuclei of planetary nebulae, themselves the products of intermediate- and low-mass main sequence evolution. Stars that begin their lifes with masses less than about 7-8 M⊙ (i.e., the vast majority of them) are expected to become white dwarfs. Among those which have already had the time to become white dwarfs since the formation of the Galaxy, a majority have burnt hydrogen and helium in their interiors. Consequently, most of the mass of a typical white dwarf is contained in a core made of the products of helium burning, mostly carbon and oxygen. The exact proportions of C and 0 are unknown because of uncertainties in the nuclear rates of helium burning.


1994 ◽  
Vol 146 ◽  
pp. 61-70
Author(s):  
James Liebert

The term dwarf stars identifies objects of small radius in the Hertzsprung-Russell (H-R) Diagram, but encompasses more than one phase of stellar evolution. The M dwarfs (type dM) populate the main sequence at the low mass end; these are the coolest core hydrogen-burning stars. They belong generally to the Galactic disk, or Population I, have relatively small space motions with respect to the Sun, and have similar metallicities to the Sun (although perhaps only within a factor of several). In particular, this means that the abundance of oxygen is always greater than that of carbon. The M subdwarfs (sdM) are the Population II counterparts, showing low metallicities and high space motions. Because they have smaller radii, they define a main sequence at lower luminosity than the M dwarfs for a given temperature. Hence the term subdwarf.


1984 ◽  
Vol 105 ◽  
pp. 123-138
Author(s):  
R.D. Cannon

This review will attempt to do two things: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars, and (ii) point out some problem areas where observations and theory do not seem to agree very well. This is of course too vast a field of research to be covered in one brief review, so I shall concentrate on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster I shall consider successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase.


1989 ◽  
Vol 342 ◽  
pp. 1003 ◽  
Author(s):  
Ben Dorman ◽  
Lorne A. Nelson ◽  
W. Y. Chau

Sign in / Sign up

Export Citation Format

Share Document