scholarly journals Particle Acceleration by Supernova Shocks and Spallogenic Nucleosynthesis of Light Elements

2018 ◽  
Vol 68 (1) ◽  
pp. 377-404 ◽  
Author(s):  
Vincent Tatischeff ◽  
Stefano Gabici

In this review, we first reassess the supernova remnant paradigm for the origin of Galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light-element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured beryllium abundances in old halo stars of low metallicity with the standard model of the Galactic cosmic-ray origin. We then discuss the various cosmic-ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. It seems to us that, among all possibilities, the superbubble model provides the most satisfactory explanation for these observations.

2020 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Andrew Taylor ◽  
Paul Rimmer ◽  
Turlough Downes

<p>Cosmic rays may have contributed to the start of life on Earth. Cosmic rays also influence and contribute to atmospheric electrical circuits, cloud cover and biological mutation rates which are important for the characterisation of exoplanetary systems. The flux of Galactic cosmic rays present at the time when life is thought to have begun on the young Earth or in other young exoplanetary systems is largely determined by the properties of the stellar wind. </p> <p>The spectrum of Galactic cosmic rays that we observe at Earth is modulated, or suppressed, by the magnetised solar wind and thus differs from the local interstellar spectrum observed by Voyager 1 and 2 outside of the solar system. Upon reaching 1au, Galactic cosmic rays subsequently interact with the Earth’s magnetosphere and some of their energy is deposited in the upper atmosphere. The properties of the solar wind, such as the magnetic field strength and velocity profile, evolve with time. Generally, young solar-type stars are very magnetically active and are therefore thought to drive stronger stellar winds. </p> <p>Here I will present our recent results which simulate the propagation of Galactic cosmic rays through the heliosphere to the location of Earth as a function of the Sun's life, from 600 Myr to 6 Gyr, in the Sun’s future. I will specifically focus on the flux of Galactic cosmic rays present at the time when life is thought to have started on Earth (~1 Gyr). I will show that the intensity of Galactic cosmic rays which reached the young Earth, by interacting with the solar wind, would have been greatly reduced in comparison to the present day intensity. I will also discuss the effect that the Sun being a slow/fast rotator would have had on the flux of cosmic rays reaching Earth at early times in the solar system's life.</p> <p>Despite the importance of Galactic cosmic rays, their chemical signature in the atmospheres’ of young Earth-like exoplanets may not be observable with instruments in the near future. On the other hand, it may instead be possible to detect their chemical signature by observing young warm Jupiters. Thus, I will also discuss the HR 2562b exoplanetary system as a candidate for observing the chemical signature of Galactic cosmic rays in a young exoplanetary atmosphere with upcoming missions such as JWST.</p>


2020 ◽  
Author(s):  
Martin Airey ◽  
Giles Harrison ◽  
Karen Aplin ◽  
Christian Pfrang

<p>Galactic cosmic rays are ubiquitous in solar system atmospheres. On Venus, the altitude of peak ion production due to cosmic rays (the Pfotzer-Regener maximum) occurs at ~63 km, within the optically thick region of the upper clouds. This indicates the possibility of electrical effects on droplets within Venusian clouds. Motivated by this, our VENI (Venusian Electricity, Nephology, and Ionisation) project explores effects of galactic cosmic ray (GCR) induced ionisation on cloud droplets in circumstances with relevance to Venus’ atmosphere. Charge is known to lower the critical supersaturation required for cloud droplets to form; slightly larger droplets are stable at lower saturation ratios if sufficiently charged. Condensation of gas directly onto ions is also potentially possible on Venus if the atmosphere is sufficiently supersaturated. GCRs and the secondary charged particles they produce are therefore anticipated to affect cloud droplet behaviour on Venus.</p><p>Experiments have been conducted using electrically isolated droplets, through levitation in a standing acoustic wave. The droplets are monitored with a high-magnification CCD camera to determine their evaporation rate and charge. The charge is measured both by the deflection in an electric field and by passing the droplet through a custom-built induction ring. A relationship between the evaporation rate and charge of the droplets is found to be consistent with theory, allowing droplet lifetime to be predicted for a given charge. Further experiments using sulphuric acid droplets in a carbon dioxide environment offer more direct relevance to the Venusian environment and cosmic ray enhancement due to solar energetic particles (SEPs) in space weather events will be simulated using a corona source.</p>


2021 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Amanda Mesquita

<p>Galactic cosmic rays are important for exoplanetary atmospheres. They can contribute to the formation of hazes, prebiotic molecules and atmospheric electrical circuits. A number of so-called fingerprint ions, such as oxonium, have been identified from chemical modelling which are thought to be signatures of ionisation by energetic particles, such as Galactic cosmic rays. These fingerprint ions may be observed in exoplanetary atmospheres with upcoming JWST observations.</p> <p>I will discuss our recent results that model the propagation of Galactic cosmic rays through the stellar winds of a number of nearby solar-type stars. Our sample comprises of 5 well-observed solar-type stars that we have constructed well-constrained stellar wind models for. This allows us to calculate the transport of Galactic cosmic rays through these systems. I will present our results of the Galactic cosmic ray fluxes that reach (a) the habitable zone and (b) the location of known exoplanets. The systems show a variety of behaviour and I will discuss the most promising systems for upcoming JWST observations. </p>


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 704-718 ◽  
Author(s):  
Paul E Damon ◽  
Songlin Cheng ◽  
Timothy W Linick

The coarse structure of the 14C spectrum consists of a secular trend curve that may be closely fit by a sinusoidal curve with period ca 11,000 yr and half amplitude ±51. This long-term trend is the result of changes in the earth's geomagnetic dipole moment. Consequently, it modulates solar components of the 14C spectrum but does not appear to modulate a component of the spectrum of ca 2300-yr period. The ca 2300-yr period is of uncertain origin but may be due to changes in climate because it also appears in the δ18O spectrum of ice cores. This component strongly modulates the well-known ca 200-yr period of the spectrum's fine structure. The hyperfine structure consists of two components that fluctuate with the 11-yr solar cycle. One component results from solar-wind modulation of the galactic cosmic rays and has a half-amplitude of ca ±1.5. The other component is the result of 14C production by solar cosmic rays that arrive more randomly but rise and fall with the 11-yr cycle and appear to dominate the fluctuation of the galactic cosmic-ray-produced component by a factor of two.


2020 ◽  
Vol 499 (2) ◽  
pp. 2124-2137
Author(s):  
D Rodgers-Lee ◽  
A A Vidotto ◽  
A M Taylor ◽  
P B Rimmer ◽  
T P Downes

ABSTRACT Cosmic rays may have contributed to the start of life on the Earth. Here, we investigate the evolution of the Galactic cosmic ray spectrum at the Earth from ages t = 0.6−6.0 Gyr. We use a 1D cosmic ray transport model and a 1.5D stellar wind model to derive the evolving wind properties of a solar-type star. At $t=1\,$ Gyr, approximately when life is thought to have begun on the Earth, we find that the intensity of ∼GeV Galactic cosmic rays would have been ∼10 times smaller than the present-day value. At lower kinetic energies, Galactic cosmic ray modulation would have been even more severe. More generally, we find that the differential intensity of low-energy Galactic cosmic rays decreases at younger ages and is well described by a broken power law in solar rotation rate. We provide an analytic formula of our Galactic cosmic ray spectra at the Earth’s orbit for different ages. Our model is also applicable to other solar-type stars with exoplanets orbiting at different radii. Specifically, we use our Galactic cosmic ray spectrum at 20 au for $t=600\,$ Myr to estimate the penetration of cosmic rays in the atmosphere of HR 2562b, a directly imaged exoplanet orbiting a young solar-type star. We find that the majority of particles <0.1 GeV are attenuated at pressures ≳10−5 bar and thus do not reach altitudes below ∼100 km. Observationally constraining the Galactic cosmic ray spectrum in the atmosphere of a warm Jupiter would in turn help constrain the flux of cosmic rays reaching young Earth-like exoplanets.


2005 ◽  
Vol 20 (29) ◽  
pp. 6666-6668 ◽  
Author(s):  
M. V. ALANIA ◽  
A. GIL ◽  
K. ISKRA ◽  
R. MODZELEWSKA ◽  
M. SILUSZYK

The changes of the structure in the energy range of the interplanetary magnetic field (IMF) turbulence versus solar activity can be considered as one of the important reasons of the long period (11-year) modulation of galactic cosmic ray (GCR) intensity; the amplitude of the 27-day variation of GCR anisotropy is greater in the qA > 0 periods than in the qA < 0 periods of the solar magnetic cycles in a good correlation with the similar changes of the 27-day variation of GCR intensity.


2004 ◽  
Vol 22 (12) ◽  
pp. 4381-4395 ◽  
Author(s):  
A. Rouillard ◽  
M. Lockwood

Abstract. An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth's environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68-year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux. Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields)


1998 ◽  
Vol 499 (2) ◽  
pp. 735-745 ◽  
Author(s):  
Martin Lemoine ◽  
Elisabeth Vangioni‐Flam ◽  
Michel Casse

2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

&lt;p&gt;We present the first results of modelling of the short-living cosmogenic isotope &lt;sup&gt;7&lt;/sup&gt;Be production, deposition, and transport using the chemistry-climate model SOCOLv&lt;sub&gt;3.0&lt;/sub&gt; aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme, &amp;#160;based on gas tracers with and without nudging to the known meteorological fields. Production of &lt;sup&gt;7&lt;/sup&gt;Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of &lt;sup&gt;7&lt;/sup&gt;Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope &lt;sup&gt;7&lt;/sup&gt;Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002&amp;#8211;2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document