scholarly journals Stars at γ-Ray Energies: the INTEGRAL Look at Stars

2004 ◽  
Vol 219 ◽  
pp. 55-62
Author(s):  
Thierry Montmerle

The European γ-ray satellite INTEGRAL, launched on October 17, 2002, is the successor to the highly successful American satellite Compton-GRO. Even though its main observational program focuses on “classical” high-energy sources like compact X-ray binaries or AGNs, some time is being devoted to γ-ray studies of massive stars and magnetically active late-type stars. We briefly describe here the four instruments of INTEGRAL, and summarize the ongoing stellar programs.

2008 ◽  
Vol 4 (S256) ◽  
pp. 20-29 ◽  
Author(s):  
Yaël Nazé

AbstractIn the study of stars, the high energy domain occupies a place of choice, since it is the only one able to directly probe the most violent phenomena: indeed, young pre-main sequence objects, hot massive stars, or X-ray binaries are best revealed in X-rays. However, previously available X-ray observatories often provided only crude information on individual objects in the Magellanic Clouds. The advent of the highly efficient X-ray facilities XMM-Newton and Chandra has now dramatically increased the sensitivity and the spatial resolution available to X-ray astronomers, thus enabling a fairly easy determination of the properties of individual sources in the LMC.


2018 ◽  
Vol 618 ◽  
pp. A150 ◽  
Author(s):  
F. Fortin ◽  
S. Chaty ◽  
A. Coleiro ◽  
J. A. Tomsick ◽  
C. H. R. Nitschelm

Context. The INTEGRAL satellite has been observing the γ-ray sky for 15 years and has detected over 900 X-ray sources of various nature. However, more than 200 of these sources still lack precise identification. Aims. Our goal is to reveal the nature of the high-energy sources detected by INTEGRAL. In particular, we want to improve the census of X-ray binaries. Methods. Photometry and spectroscopy were performed in July 2012 on 14 INTEGRAL sources in near-infrared at the Very Large Telescope on the European Southern Observatory-UT3 telescope equipped with the ISAAC spectrograph. We used Ks images reaching to a depth of magnitude 18.5 to look for unique counterparts to high-energy detections to check for both extended sources and photometric variability. The analysis of near-infrared spectral features allows us to constrain the nature of these X-ray sources by comparing them to stellar spectra atlases. Results. We present photometric and/or spectroscopic data for 14 sources (IGR J00465–4005, IGR J10447–6027, IGR J12489–6243, IGR J13020–6359, IGR J13186–6257, IGR J15293–5609, IGR J17200–3116, IGR J17404–3655, IGR J17586–2129, IGR J17597–2201, IGR J18457+0244, IGR J18532+0416, IGR J19308+0530, and IGR J19378–0617). We conclude that 5 of these are active galactic nuclei, 5 are cataclysmic variables, 2 are low- or intermediate-mass X-ray binaries, and 2 are Be high-mass X-ray binaries.


2008 ◽  
Vol 17 (10) ◽  
pp. 1917-1924
Author(s):  
M. CHERNYAKOVA ◽  
A. NERONOV

Gamma-ray-loud binary systems are a newly identified class of X-ray binaries detected up to TeV energies. Three such systems — PSR B1259–63, LS 5039 and LSI +61 303 — have been firmly detected as persistent or regularly variable TeV γ-ray emitters. The origin of the high-energy activity of these sources is not clear. In this paper we review the multiwavelength properties of these systems and discuss their similarities and peculiarities.


2008 ◽  
Vol 17 (10) ◽  
pp. 1849-1858 ◽  
Author(s):  
J. M. PAREDES

The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259–63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of nonthermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) γ-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE γ-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.


2018 ◽  
Vol 14 (S346) ◽  
pp. 49-54
Author(s):  
F. Fortin ◽  
S. Chaty ◽  
A. Coleiro ◽  
J. A. Tomsick ◽  
C. H. R. Nitschelm

AbstractINTEGRAL has been observing the γ-ray sky for 15 years and has discovered many high-energy sources of various nature. Among them, active galactic nuclei (AGN), low or high-mass X-ray binaries (LMXB and HMXB) and cataclysmic variables (CV) are rather difficult to differentiate from one another at high energies and require further optical or near-infrared observations to constrain their exact nature. Using near-infrared photometric and spectroscopic data from ESO VLT/ISAAC, we aim to reveal the nature of 14 high-energy INTEGRAL sources and improve the census of X-ray binaries. By comparing their spectral features to stellar spectra atlases, we identified 5 new CVs, 2 low or intermediate mass X-ray binaries, 2 HMXBs and 5 AGNs.


1991 ◽  
Vol 148 ◽  
pp. 432-433
Author(s):  
R. J. Protheroe

Ultra-high-energy (UHE) γ-rays have been detected from several X-ray binaries. UHE γ-rays from sources in the LMC will interact in the microwave background producing electrons which emit synchrotron radiation in the X-ray and γ-ray bands. This radiation might be observable.


2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


1988 ◽  
Vol 20 (1) ◽  
pp. 671-675
Author(s):  
C.J. Cesarsky ◽  
R.A. Sunyaev ◽  
G.W. Clark ◽  
R. Giacconi ◽  
Vin-Yue Qu ◽  
...  

The european X-ray observatory (EXOSAT), which was launched in 1983 and which finished operations in April 1986, has brought a rich harvest of results in the period 1984-1987, surveyed here. The EXOSAT payload consisted of three sets of instruments: two low energy imaging telescopes (LE:E<2 KeV), a medium-energy experiment (ME:E=l-50KeV) and a gas scintillation proportional counter (GSPC:E=2-20KeV). Over most of the energy range covered, EXOSAT was not more sensitive than its predecessor, the american EINSTEIN satellite. But the EINSTEIN satellite is far from having exhausted the treasures of the X-ray sky. And EXOSAT, thanks to its elliptical 90-hour orbit, had the extra advantage of being able to make long, continuous observations of interesting objects, lasting up to 72 hours. Thus, EXOSAT was very well suited for variability studies, and many of its most important findings are in this area. EXOSAT observations sample a vide range of astrophysical sources: X-ray binaries, cataclysmic variables and active stars; supernova remnants and the interstellar medium; active galactic nuclei, and clusters of galaxies. Among the highlights, let us mention:


2019 ◽  
Vol 489 (4) ◽  
pp. 5076-5086 ◽  
Author(s):  
K K Singh ◽  
B Bisschoff ◽  
B van Soelen ◽  
A Tolamatti ◽  
J P Marais ◽  
...  

ABSTRACT In this work, we present a multiwavelength study of the blazar 1ES 1218+304 using near simultaneous observations over 10 yr during the period 2008 September 1 to 2018 August 31 (MJD 54710–58361). We have analysed data from Swift-UVOT, Swift-XRT, and Fermi-LAT to study the long term behaviour of 1ES 1218+304 in different energy bands over the last decade. We have also used the archival data from OVRO, MAXI, and Swift-BAT available during the above period. The near simultaneous data on 1ES 1218+304 suggest that the long term multiwavelength emission from the source is steady and does not show any significant change in the source activity. The optical/UV fluxes are found to be dominated by the host galaxy emission and can be modelled using the pegase code. However, the time averaged X-ray and γ-ray emissions from the source are reproduced using a single zone leptonic model with log-parabolic distribution for the radiating particles. The intrinsic very high energy γ-ray emission during a low activity state of the source is broadly consistent with the predictions of the leptonic model for blazars. We have investigated the physical properties of the jet and the mass of the supermassive black hole at the centre of the host galaxy using long term X-ray observations from the Swift-XRT which is in agreement with the value derived using blackbody approximation of the host galaxy. We also discuss the extreme nature of the source on the basis of X-ray and γ-ray observations.


Sign in / Sign up

Export Citation Format

Share Document