scholarly journals X-ray Properties of Spiral Galaxies

2003 ◽  
Vol 214 ◽  
pp. 59-69
Author(s):  
Roberto Soria

X-ray studies of nearby spiral galaxies with star formation allow us to investigate temperature and spatial distribution of the hot diffuse plasma, and to carry out individual and statistical studies of different classes of discrete sources (low- and high-mass X-ray binaries, Supernova remnants, supersoft and ultra-luminous sources). In particular, we briefly review the different models proposed to explain the ultra-luminous sources. We can then use the X-ray properties of a galaxy to probe its star formation history. We choose the starburst spiral M83 to illustrate some of these issues.

2020 ◽  
Vol 494 (4) ◽  
pp. 5967-5984 ◽  
Author(s):  
K Kouroumpatzakis ◽  
A Zezas ◽  
P Sell ◽  
K Kovlakas ◽  
P Bonfini ◽  
...  

ABSTRACT X-ray luminosity (LX) originating from high-mass X-ray binaries (HMXBs) is tightly correlated with the host galaxy’s star formation rate (SFR). We explore this connection at sub-galactic scales spanning ∼7 dex in SFR and ∼8 dex in specific SFR (sSFR). There is good agreement with established relations down to SFR ≃ 10−3 M$_{\odot }\, \rm {yr^{-1}}$, below which an excess of X-ray luminosity emerges. This excess likely arises from low-mass X-ray binaries. The intrinsic scatter of the LX–SFR relation is constant, not correlated with SFR. Different star formation indicators scale with LX in different ways, and we attribute the differences to the effect of star formation history. The SFR derived from H α shows the tightest correlation with X-ray luminosity because H α emission probes stellar populations with ages similar to HMXB formation time-scales, but the H α-based SFR is reliable only for $\rm sSFR{\gt }10^{-12}$ M$_{\odot }\, \rm {yr^{-1}}$/M⊙.


2008 ◽  
Vol 4 (S256) ◽  
pp. 355-360
Author(s):  
Vallia Antoniou ◽  
Andreas Zezas ◽  
Despina Hatzidimitriou

AbstractUsing Chandra, XMM-Newton and optical photometric catalogs we study the young X-ray binary (XRB) populations of the Small Magellanic Cloud (SMC). We find that the Be/X-ray binaries (Be-XRBs) are observed in regions with star-formation (SF) rate bursts ~30–70 Myr ago, which coincides with the age of maximum Be-star formation, while regions with strong but more recent SF (e.g., the Wing) are deficient in Be-XRBs. Using the 2dF spectrograph of the Anglo-Australian Telescope (AAT) we have obtained optical spectra of 20 High-Mass X-ray Binaries (HMXBs) in the SMC. All of these sources were proved to be Be-XRBs. Similar spectral-type distributions of Be-XRBs and Be field stars in the SMC have been found. On the other hand, the Be-XRBs in the Galaxy follow a different distribution than the isolated Be stars in the Galaxy, in agreement with previous studies.


2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.


1999 ◽  
Vol 192 ◽  
pp. 496-502
Author(s):  
U. Kolb ◽  
J. Osborne ◽  
M. G. Watson

X-ray binaries (XBs) dominate the X-ray emission of normal galaxies. The new X-ray satellite XMM will study the XB population of M31 in detail. The resulting M31 sample will significantly advance our understanding of the evolutionary history of XBs, and ultimately allow us to probe the star formation history of stellar populations by X-ray observations.


2020 ◽  
Vol 498 (4) ◽  
pp. 4705-4720 ◽  
Author(s):  
Serena Vinciguerra ◽  
Coenraad J Neijssel ◽  
Alejandro Vigna-Gómez ◽  
Ilya Mandel ◽  
Philipp Podsiadlowski ◽  
...  

ABSTRACT Be X-ray binaries (BeXRBs) consist of rapidly rotating Be stars with neutron star (NS) companions accreting from the circumstellar emission disc. We compare the observed population of BeXRBs in the Small Magellanic Cloud (SMC) with simulated populations of BeXRB-like systems produced with the compas population synthesis code. We focus on the apparently higher minimal mass of Be stars in BeXRBs than in the Be population at large. Assuming that BeXRBs experienced only dynamically stable mass transfer, their mass distribution suggests that at least $\sim 30{{\ \rm per\ cent}}$ of the mass donated by the progenitor of the NS is typically accreted by the B-star companion. We expect these results to affect predictions for the population of double compact object mergers. A convolution of the simulated BeXRB population with the star formation history of the SMC shows that the excess of BeXRBs is most likely explained by this galaxy’s burst of star formation ∼20–40 Myr ago.


2006 ◽  
Vol 2 (S235) ◽  
pp. 313-313
Author(s):  
J. Yin ◽  
J.L. Hou ◽  
R.X. Chang ◽  
S. Boissier ◽  
N. Prantzos

Andromeda galaxy (M31,NGC224) is the biggest spiral in the Local Group. By studying the star formation history(SFH) and chemical evolution of M31, and comparing with the Milky Way Galaxy, we are able to understand more about the formation and evolution of spiral galaxies.


2004 ◽  
Vol 607 (2) ◽  
pp. 721-738 ◽  
Author(s):  
Colin Norman ◽  
Andrew Ptak ◽  
Ann Hornschemeier ◽  
Guenther Hasinger ◽  
Jacqueline Bergeron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document