scholarly journals Compact Binaries as Tracers of Star Formation Histories: the XMM Survey of M31

1999 ◽  
Vol 192 ◽  
pp. 496-502
Author(s):  
U. Kolb ◽  
J. Osborne ◽  
M. G. Watson

X-ray binaries (XBs) dominate the X-ray emission of normal galaxies. The new X-ray satellite XMM will study the XB population of M31 in detail. The resulting M31 sample will significantly advance our understanding of the evolutionary history of XBs, and ultimately allow us to probe the star formation history of stellar populations by X-ray observations.

2020 ◽  
Vol 498 (4) ◽  
pp. 4705-4720 ◽  
Author(s):  
Serena Vinciguerra ◽  
Coenraad J Neijssel ◽  
Alejandro Vigna-Gómez ◽  
Ilya Mandel ◽  
Philipp Podsiadlowski ◽  
...  

ABSTRACT Be X-ray binaries (BeXRBs) consist of rapidly rotating Be stars with neutron star (NS) companions accreting from the circumstellar emission disc. We compare the observed population of BeXRBs in the Small Magellanic Cloud (SMC) with simulated populations of BeXRB-like systems produced with the compas population synthesis code. We focus on the apparently higher minimal mass of Be stars in BeXRBs than in the Be population at large. Assuming that BeXRBs experienced only dynamically stable mass transfer, their mass distribution suggests that at least $\sim 30{{\ \rm per\ cent}}$ of the mass donated by the progenitor of the NS is typically accreted by the B-star companion. We expect these results to affect predictions for the population of double compact object mergers. A convolution of the simulated BeXRB population with the star formation history of the SMC shows that the excess of BeXRBs is most likely explained by this galaxy’s burst of star formation ∼20–40 Myr ago.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
James Schombert ◽  
Tamela Maciel ◽  
Stacy McGaugh

This paper presents optical and Hαimaging for a large sample of LSB galaxies selected from the PSS-II catalogs (Schombert et al., 1992). As noted in previous work, LSB galaxies span a range of luminosities () and sizes (), although they are consistent in their irregular morphology. Their Hαluminosities (L(Hα)) range from 1036to 1041 ergs s−1(corresponding to a range in star formation, using canonical prescriptions, from 10−5to 1  yr−1). Although their optical colors are at the extreme blue edge for galaxies, they are similar to the colors of dwarf galaxies (Van Zee, 2001) and gas-rich irregulars (Hunter and Elmegreen, 2006). However, their star formation rates per unit stellar mass are a factor of ten less than other galaxies of the same baryonic mass, indicating that they are not simply quiescent versions of more active star-forming galaxies. This paper presents the data, reduction techniques, and new philosophy of data storage and presentation. Later papers in this series will explore the stellar population and star formation history of LSB galaxies using this dataset.


2020 ◽  
Vol 494 (4) ◽  
pp. 5967-5984 ◽  
Author(s):  
K Kouroumpatzakis ◽  
A Zezas ◽  
P Sell ◽  
K Kovlakas ◽  
P Bonfini ◽  
...  

ABSTRACT X-ray luminosity (LX) originating from high-mass X-ray binaries (HMXBs) is tightly correlated with the host galaxy’s star formation rate (SFR). We explore this connection at sub-galactic scales spanning ∼7 dex in SFR and ∼8 dex in specific SFR (sSFR). There is good agreement with established relations down to SFR ≃ 10−3 M$_{\odot }\, \rm {yr^{-1}}$, below which an excess of X-ray luminosity emerges. This excess likely arises from low-mass X-ray binaries. The intrinsic scatter of the LX–SFR relation is constant, not correlated with SFR. Different star formation indicators scale with LX in different ways, and we attribute the differences to the effect of star formation history. The SFR derived from H α shows the tightest correlation with X-ray luminosity because H α emission probes stellar populations with ages similar to HMXB formation time-scales, but the H α-based SFR is reliable only for $\rm sSFR{\gt }10^{-12}$ M$_{\odot }\, \rm {yr^{-1}}$/M⊙.


2008 ◽  
Vol 681 (2) ◽  
pp. 1163-1182 ◽  
Author(s):  
B. D. Lehmer ◽  
W. N. Brandt ◽  
D. M. Alexander ◽  
E. F. Bell ◽  
A. E. Hornschemeier ◽  
...  

2008 ◽  
Vol 4 (S258) ◽  
pp. 51-60
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Noelia E. D. Noël ◽  
Antonio Aparicio ◽  
Sebastián L. Hidalgo ◽  
...  

AbstractThe star formation history of the Magellanic Clouds, including the old and intermediate-age star formation events, can be studied reliably and in detail through color-magnitude diagrams reaching the oldest main sequence turnoffs. This paper reviews our current understanding of the Magellanic Clouds' star formation histories and discusses the impact of this information on general studies of galaxy formation and evolution.


2011 ◽  
Vol 7 (S284) ◽  
pp. 244-247 ◽  
Author(s):  
Richard M. McDermid ◽  
Katherine Alatalo ◽  
Leo Blitz ◽  
Maxime Bois ◽  
Frédéric Bournaud ◽  
...  

AbstractWe present an exploration of the integrated stellar populations of early-type galaxies (ETGs) from the ATLAS3D survey. We use two approaches: firstly the application of line-indices interpreted through single stellar population (SSP) models, which provide a single value of age, metallicity and abundance ratio. And secondly, by fitting a linear combination of SSP spectra to our data, smoothly weighted in the free parameters of age and metallicity, thereby inferring a star-formation history of these galaxies. Despite the significant differences in these approaches, we obtain generally consistent results, such that galaxies that are more massive appear older with enhanced abundance ratios using line indices, and have shorter star-formation histories weighted to early times. We highlight two limitations of the index-SSP approach. Firstly the SSP-equivalent ages belie the fact that ETGs are overwhelmingly composed of ancient stars. Secondly, the young stellar contributions implied in our star formation histories are required to obtain realistic UV-optical colours. We remark that, even fitting solar-abundance models, we can recover a star-formation duration that correlates with the measured alpha-enhancement, in agreement with other recent work.


2003 ◽  
Vol 214 ◽  
pp. 59-69
Author(s):  
Roberto Soria

X-ray studies of nearby spiral galaxies with star formation allow us to investigate temperature and spatial distribution of the hot diffuse plasma, and to carry out individual and statistical studies of different classes of discrete sources (low- and high-mass X-ray binaries, Supernova remnants, supersoft and ultra-luminous sources). In particular, we briefly review the different models proposed to explain the ultra-luminous sources. We can then use the X-ray properties of a galaxy to probe its star formation history. We choose the starburst spiral M83 to illustrate some of these issues.


Sign in / Sign up

Export Citation Format

Share Document