scholarly journals A comprehensive study of the link between star-formation history and X-ray source populations in the SMC

2008 ◽  
Vol 4 (S256) ◽  
pp. 355-360
Author(s):  
Vallia Antoniou ◽  
Andreas Zezas ◽  
Despina Hatzidimitriou

AbstractUsing Chandra, XMM-Newton and optical photometric catalogs we study the young X-ray binary (XRB) populations of the Small Magellanic Cloud (SMC). We find that the Be/X-ray binaries (Be-XRBs) are observed in regions with star-formation (SF) rate bursts ~30–70 Myr ago, which coincides with the age of maximum Be-star formation, while regions with strong but more recent SF (e.g., the Wing) are deficient in Be-XRBs. Using the 2dF spectrograph of the Anglo-Australian Telescope (AAT) we have obtained optical spectra of 20 High-Mass X-ray Binaries (HMXBs) in the SMC. All of these sources were proved to be Be-XRBs. Similar spectral-type distributions of Be-XRBs and Be field stars in the SMC have been found. On the other hand, the Be-XRBs in the Galaxy follow a different distribution than the isolated Be stars in the Galaxy, in agreement with previous studies.

2020 ◽  
Vol 494 (4) ◽  
pp. 5967-5984 ◽  
Author(s):  
K Kouroumpatzakis ◽  
A Zezas ◽  
P Sell ◽  
K Kovlakas ◽  
P Bonfini ◽  
...  

ABSTRACT X-ray luminosity (LX) originating from high-mass X-ray binaries (HMXBs) is tightly correlated with the host galaxy’s star formation rate (SFR). We explore this connection at sub-galactic scales spanning ∼7 dex in SFR and ∼8 dex in specific SFR (sSFR). There is good agreement with established relations down to SFR ≃ 10−3 M$_{\odot }\, \rm {yr^{-1}}$, below which an excess of X-ray luminosity emerges. This excess likely arises from low-mass X-ray binaries. The intrinsic scatter of the LX–SFR relation is constant, not correlated with SFR. Different star formation indicators scale with LX in different ways, and we attribute the differences to the effect of star formation history. The SFR derived from H α shows the tightest correlation with X-ray luminosity because H α emission probes stellar populations with ages similar to HMXB formation time-scales, but the H α-based SFR is reliable only for $\rm sSFR{\gt }10^{-12}$ M$_{\odot }\, \rm {yr^{-1}}$/M⊙.


2003 ◽  
Vol 214 ◽  
pp. 59-69
Author(s):  
Roberto Soria

X-ray studies of nearby spiral galaxies with star formation allow us to investigate temperature and spatial distribution of the hot diffuse plasma, and to carry out individual and statistical studies of different classes of discrete sources (low- and high-mass X-ray binaries, Supernova remnants, supersoft and ultra-luminous sources). In particular, we briefly review the different models proposed to explain the ultra-luminous sources. We can then use the X-ray properties of a galaxy to probe its star formation history. We choose the starburst spiral M83 to illustrate some of these issues.


2020 ◽  
Vol 498 (4) ◽  
pp. 4705-4720 ◽  
Author(s):  
Serena Vinciguerra ◽  
Coenraad J Neijssel ◽  
Alejandro Vigna-Gómez ◽  
Ilya Mandel ◽  
Philipp Podsiadlowski ◽  
...  

ABSTRACT Be X-ray binaries (BeXRBs) consist of rapidly rotating Be stars with neutron star (NS) companions accreting from the circumstellar emission disc. We compare the observed population of BeXRBs in the Small Magellanic Cloud (SMC) with simulated populations of BeXRB-like systems produced with the compas population synthesis code. We focus on the apparently higher minimal mass of Be stars in BeXRBs than in the Be population at large. Assuming that BeXRBs experienced only dynamically stable mass transfer, their mass distribution suggests that at least $\sim 30{{\ \rm per\ cent}}$ of the mass donated by the progenitor of the NS is typically accreted by the B-star companion. We expect these results to affect predictions for the population of double compact object mergers. A convolution of the simulated BeXRB population with the star formation history of the SMC shows that the excess of BeXRBs is most likely explained by this galaxy’s burst of star formation ∼20–40 Myr ago.


1999 ◽  
Vol 192 ◽  
pp. 100-103
Author(s):  
A. P. Cowley ◽  
P. C. Schmidtke ◽  
V. A. Taylor ◽  
T.K. McGrath ◽  
J. B. Hutchings ◽  
...  

In this study we compare the global populations of stellar X-ray sources in the LMC, SMC, and the Galaxy. After removing foreground stars and background AGN from the samples, the relative numbers of the various types of X-ray point sources within the LMC and SMC are similar, but differ markedly from those in the Galaxy. The Magellanic Clouds are rich in high-mass X-ray binaries (HMXB), especially those containing rapidly rotating Be stars. However, the LMC and SMC both lack the large number of low-mass X-ray binaries (LMXB) found in the Milky Way, which are known to represent a very old stellar population based on their kinematics, chemical composition, and spatial distribution.


2004 ◽  
Vol 607 (2) ◽  
pp. 721-738 ◽  
Author(s):  
Colin Norman ◽  
Andrew Ptak ◽  
Ann Hornschemeier ◽  
Guenther Hasinger ◽  
Jacqueline Bergeron ◽  
...  

1999 ◽  
Vol 192 ◽  
pp. 496-502
Author(s):  
U. Kolb ◽  
J. Osborne ◽  
M. G. Watson

X-ray binaries (XBs) dominate the X-ray emission of normal galaxies. The new X-ray satellite XMM will study the XB population of M31 in detail. The resulting M31 sample will significantly advance our understanding of the evolutionary history of XBs, and ultimately allow us to probe the star formation history of stellar populations by X-ray observations.


Author(s):  
R O Brown ◽  
M J Coe ◽  
W C G Ho ◽  
A T Okazaki

Abstract As the largest population of high mass X-ray binaries, Be/X-ray binaries provide an excellent laboratory to investigate the extreme physics of neutron stars. It is generally accepted that Be stars possess a circumstellar disc, providing an additional source of accretion to the stellar winds present around young hot stars. Interaction between the neutron star and the disc is often the dominant accretion mechanism. A large amount of work has gone into modelling the properties of these circumstellar discs, allowing for the explanation of a number of observable phenomena. In this paper, smoothed particle hydroynamics simulations are performed whilst varying the model parameters (orbital period, eccentricity, the mass ejection rate of the Be star and the viscosity and orientation of the disc). The relationships between the model parameters and the disc’s characteristics (base gas density, the accretion rate of the neutron star and the disc’s size) are presented. The observational evidence for a dependency of the size of the Be star’s circumstellar disc on the orbital period (and semi-major axis) is supported by the simulations.


1987 ◽  
Vol 92 ◽  
pp. 291-308 ◽  
Author(s):  
E.P.J. van den Heuvel ◽  
S. Rappaport

Most evidence on X-ray emission from the vicinity of Be stars concerns the Be/X-ray binaries. Presently some 20 of these systems are known, making them the most numerous class of massive X-ray binaries. Evidence for the binary nature of these systems comes from (i) Doppler modulation of X-ray pulse periods, (ii) periodic X-ray flaring behavior, and (iii) correlated optical and X-ray variability. The correlation between X-ray pulse period and orbital period found by Corbet (1984) can potentially provide important information on the densities and velocities in the circumstellar disks of Be stars.Evolutionary models indicate that the Be/X-ray binaries represent a later stage in the evolution of normal close binaries with initial primary masses predominantly in the the range 8 to 15 M⊙ . These models indicate that also a class of slightly less massive Be star binaries should exist in which the compact companions are white dwarfs. Be-type blue stragglers in galactic clusters may be such systems.


2015 ◽  
Vol 11 (S319) ◽  
pp. 64-65
Author(s):  
Brigitte Rocca-Volmerange

AbstractThe origin of the supermassive black hole masses MSMBH discovered at the highest redshifts is still actively debated. Moreover the statistically significant relation of MSMBH with bulge luminosities LV, extended on several magnitude orders, confirms a common physical process linking small (≤ 1pc) to large (kpcs) size scales. The Spectral Energy Distributions (SEDs) of two z=3.8 radio galaxies 4C41.17 and TN J2007-1316, best-fitted by evolved early type galaxy and starburst scenarios also imply masses of stellar remnants. Computed with the evolutionary code Pegase.3, the cumulated stellar black hole mass MsBH reach up to several 109M⊙, similar to MSMBH at same z. We propose the SMBH growth is due to the migration of the stellar dense residues (sBH) towards the galaxy core by dynamical friction. Discussed in terms of time-scales, this process which is linking AGN and star formation, also fully justifies the famous relation MSMBH-LV.


Sign in / Sign up

Export Citation Format

Share Document