scholarly journals Mass Loss and Stellar Rotation

2004 ◽  
Vol 215 ◽  
pp. 479-490 ◽  
Author(s):  
Henny J.G.L.M. Lamers

The observational evidence for non-spherical winds of rapidly rotating hot and cool stars is presented. Models to explain equatorially enhanced winds of AGB stars and of hot B[e]-supergiants are discussed. We distinguish between models with a disk due to an increased equatorial mass flux and those with a disk due to spherical mass loss with a wind flowing towards the equatorial plane.

2000 ◽  
Vol 177 ◽  
pp. 325-330
Author(s):  
Ernst A. Dorfi ◽  
Susanne Höfner

A new mechanism is proposed to explain an asymmetric mass loss of carbon-rich AGB stars where slow stellar rotation modifies a wind due to the non-linear behavior of the dust formation process. This effect leads to a preferential mass loss with higher velocities in the equatorial plane and also provides a simple explanation for the widely-observed asymmetries in the shapes of planetary nebulae.


1995 ◽  
Vol 155 ◽  
pp. 23-30
Author(s):  
C. Waelkens

AbstractWe review observational evidence on the interaction between stellar pulsation and evolution. We discuss to what extent observations of pulsating stars with variable amplitudes and pulsation periods have implications on our understanding of stellar structure and evolution. The probable link between mass loss and pulsation in AGB stars and in hot luminous stars appears to be the strongest way in which pulsations affect evolution. We point out the possibility that forced oscillations in the components of binaries may have important consequences on evolution, that could offer an explanation for some classes of peculiar evolved objects.


1998 ◽  
Vol 11 (1) ◽  
pp. 395-395
Author(s):  
S. Nishida ◽  
T. Tanabé ◽  
S. Matsumoto ◽  
T. Onaka ◽  
Y. Nakada ◽  
...  

A systematic near-infrared survey was made for globular clusters in the Magellanic Clouds. Two infrared stars were discovered in NGC419 (SMC) and NGC1783 (LMC). NGC419 and NGC1783 are well-studied rich globular clusters whose turn-off masses and ages are estimated MTO ~ 2.0 Mʘ and т ~1.2 Gyr for NGC419, and MT0 ~ 2.0 Mʘ and т ʘ 0.9 Gyr for NGC1783, respectively. The periods of the infrared light variations were determined to be 540 dfor NGC419IR1 and to be 480 d for NGC1783IR1, respectively. Comparison of the measurements with the period—if magnitude relation for carbon Miras in the LMC by Groenewegen and Whitelock(1996) revealed that the Kmagnitudes of the infrared stars were fainter by about 0.3 — 0.8 magnitude than those predicted by the P — K relation. This deviation can be explained if the infrared stars are surrounded by thick dust shells and are obscured even in the K band. The positions of NGC419IR1and NGC1783IR1 on the P — K diagram suggest that AGB stars with the main sequence masses of about 2 Mʘ start their heavy mass-loss when P ʘ 500 d.


2019 ◽  
Vol 623 ◽  
pp. A119 ◽  
Author(s):  
S. Bladh ◽  
K. Eriksson ◽  
P. Marigo ◽  
S. Liljegren ◽  
B. Aringer

Context. The heavy mass loss observed in evolved stars on the asymptotic giant branch (AGB) is usually attributed to dust-driven winds, but it is still an open question how much AGB stars contribute to the dust production in the interstellar medium, especially at lower metallicities. In the case of C-type AGB stars, where the wind is thought to be driven by radiation pressure on amorphous carbon grains, there should be significant dust production even in metal-poor environments. Carbon stars can manufacture the building blocks needed to form the wind-driving dust species themselves, irrespective of the chemical composition they have, by dredging up carbon from the stellar interior during thermal pulses. Aims. We investigate how the mass loss in carbon stars is affected by a low-metallicity environment, similar to the Large and Small Magellanic Clouds (LMC and SMC). Methods. The atmospheres and winds of C-type AGB stars are modeled with the 1D spherically symmetric radiation-hydrodynamical code Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN). The models include a time-dependent description for nucleation, growth, and evaporation of amorphous carbon grains directly out of the gas phase. To explore the metallicity-dependence of mass loss we calculate model grids at three different chemical abundances (solar, LMC, and SMC). Since carbon may be dredged up during the thermal pulses as AGB stars evolve, we keep the carbon abundance as a free parameter. The models in these three different grids all have a current mass of one solar mass; effective temperatures of 2600, 2800, 3000, or 3200 K; and stellar luminosities equal to logL*∕L⊙ = 3.70, 3.85, or 4.00. Results. The DARWIN models show that mass loss in carbon stars is facilitated by high luminosities, low effective temperatures, and a high carbon excess (C–O) at both solar and subsolar metallicities. Similar combinations of effective temperature, luminosity, and carbon excess produce outflows at both solar and subsolar metallicities. There are no large systematic differences in the mass-loss rates and wind velocities produced by these wind models with respect to metallicity, nor any systematic difference concerning the distribution of grain sizes or how much carbon is condensed into dust. DARWIN models at subsolar metallicity have approximately 15% lower mass-loss rates compared to DARWIN models at solar metallicity with the same stellar parameters and carbon excess. For both solar and subsolar environments typical grain sizes range between 0.1 and 0.5 μm, the degree of condensed carbon varies between 5 and 40%, and the gas-to-dust ratios between 500 and 10 000. Conclusions. C-type AGB stars can contribute to the dust production at subsolar metallicities (down to at least [Fe∕H] = −1) as long as they dredge up sufficient amounts of carbon from the stellar interior. Furthermore, stellar evolution models can use the mass-loss rates calculated from DARWIN models at solar metallicity when modeling the AGB phase at subsolar metallicities if carbon excess is used as the critical abundance parameter instead of the C/O ratio.


2011 ◽  
Vol 7 (S283) ◽  
pp. 115-118
Author(s):  
Stacey N. Bright ◽  
Orsola De Marco ◽  
Olivier Chesneau ◽  
Eric Lagadec ◽  
Hans Van Winckel ◽  
...  

AbstractAGB stars appear to lose mass spherically, but many PNe resulting from the AGB mass-loss have non-spherical morphologies. Compact disks have been found in some bipolar PNe, but their role in the shaping process remains unknown. Compact Keplerian disks are found to be common around post-AGB binaries, however, these objects may never develop into PNe. Another group of post-AGB stars, known as pre-PNe, are surrounded by collimated nebulae shining by reflected light or shock ionisation. We are observing the inner circumstellar regions of pre-PNe at high angular resolutions with the VLTI. We seek to compare pre-PNe disks to those around other post-AGB stars and PNe. New observations of the pre-PN, IRAS 16279-4757, show evidence for a disk similar to those seen in young PNe.


2009 ◽  
Author(s):  
Iain McDonald ◽  
Jacco Th. van Loon ◽  
Martha L. Boyer ◽  
Eric Stempels

1989 ◽  
Vol 106 ◽  
pp. 229-231
Author(s):  
R.E. Stencel ◽  
J.E. Pesce ◽  
K.M. MacGregor

AbstractConventional theory explains the origin of carbon stars as due to dredge up of carbon enriched material from the stellar core during helium flash events late in the life of solar mass AGB stars (e.g. Boothroyd and Sackmann 1988). This relatively efficient process however, seems to produce a larger C/O ratio than observed (Lambert et al. 1987). A secondary effect which could contribute to the appearance of carbon stars, is the selective removal of oxygen from the atmosphere by radiative force expulsion of oxygen rich dust grains (e.g. silicates like [Mg, Fe2SiO4]). We present calculations for this scenario which evaluate the degree of momentum coupling between the grains and gas under the thermodynamical conditions of AGB star atmospheres.


2018 ◽  
Vol 14 (S343) ◽  
pp. 269-272
Author(s):  
Giada Pastorelli ◽  
Paola Marigo ◽  
Léo Girardi ◽  

AbstractMost of the physical processes driving the TP-AGB evolution are not yet fully understood and they need to be modelled with parameterised descriptions. We present the results of the on-going calibration of the TP-AGB phase based on a complete sample of AGB stars in the Small Magellanic Cloud (SAGE-SMC survey). We computed large grids of TP-AGB models with several combinations of third dredge-up and mass-loss prescriptions with the COLIBRI code. The SMC AGB population is modelled with the population synthesis code TRILEGAL according to the space-resolved star formation history derived with the deep photometry from the VISTA survey of the Magellanic Clouds. We put quantitative constraints on the efficiencies of the third dredge-up and mass loss by requiring the models to reproduce the star counts and the luminosity functions of the observed Oxygen-, Carbon-rich and extreme-AGB stars and we investigate the impact of the best-fitting prescriptions on the chemical yields.


Sign in / Sign up

Export Citation Format

Share Document