scholarly journals Rotation and Cataclysmic Variables

2004 ◽  
Vol 215 ◽  
pp. 551-560 ◽  
Author(s):  
Sumner Starrfield ◽  
Edward M. Sion ◽  
Paula Szkody

Cataclysmic Variables are binary star systems and so are closely connected to the subject of this meeting. The stars revolve around the center of mass of the system. The gas lost by the secondary through the inner Lagrangian point enters the Roche lobe of the white dwarf with the angular momentum of the L1 point and, therefore, forms an accretion disk which rotates around the white dwarf. The gas must lose angular momentum to fall onto the white dwarf, and the white dwarf itself must rotate as it accretes infalling material and angular momentum and is gradually spun up. We will review what is known about these phenomena, and emphasize the new results about the white dwarfs that have been learned in the past few years.

1989 ◽  
Vol 114 ◽  
pp. 337-340
Author(s):  
J.P. Lasota ◽  
J.M. Hameury ◽  
A.R. King

We show that the existence of the AM Her period spike implies (i) a unique white dwarf mass ≃ 0.6 − 0.7M⊙ for most magnetic CV’s (ii) nova explosions remove exactly the accreted mass from magnetic white dwarfs, and (iii) the maximum magnetic field for most CV’s is ≤ 4 × 107 G. The existence of the spike is very strong support for the idea that the period gap results from a drastic reduction of angular momentum losses when the secondary star becomes fully convective.


2020 ◽  
Vol 498 (3) ◽  
pp. 3457-3469
Author(s):  
A W Shaw ◽  
C O Heinke ◽  
K Mukai ◽  
J A Tomsick ◽  
V Doroshenko ◽  
...  

ABSTRACT The hard X-ray spectrum of magnetic cataclysmic variables can be modelled to provide a measurement of white dwarf mass. This method is complementary to radial velocity measurements, which depend on the (typically rather uncertain) binary inclination. Here, we present results from a Legacy Survey of 19 magnetic cataclysmic variables with NuSTAR. We fit accretion column models to their 20–78 keV spectra and derive the white dwarf masses, finding a weighted average $\bar{M}_{\rm WD}=0.77\pm 0.02$ M⊙, with a standard deviation σ = 0.10 M⊙, when we include the masses derived from previous NuSTAR observations of seven additional magnetic cataclysmic variables. We find that the mass distribution of accreting magnetic white dwarfs is consistent with that of white dwarfs in non-magnetic cataclysmic variables. Both peak at a higher mass than the distributions of isolated white dwarfs and post-common-envelope binaries. We speculate as to why this might be the case, proposing that consequential angular momentum losses may play a role in accreting magnetic white dwarfs and/or that our knowledge of how the white dwarf mass changes over accretion–nova cycles may also be incomplete.


1987 ◽  
Vol 93 ◽  
pp. 47-51
Author(s):  
E.M. Sion

AbstractWith the recent detection of direct white dwarf photospheric radiation from certain cataclysmic variables in quiescent (low accretion) states, important implications and clues about the nature and long-term evolution of cataclysmic variables can emerge from an analysis of their physical properties. Detection of the underlying white dwarfs has led to a preliminary empirical CV white dwarf temperature distribution function and, in a few cases, the first detailed look at a freshly accreted while dwarf photosphere. The effective temperatures of CV white dwarfs plotted versus orbital period for each type of CV appears to reveal a tendency for the cooler white dwarf primaries to reside in the shorter period systems. Possible implications are briefly discussed.


2004 ◽  
Vol 193 ◽  
pp. 382-386 ◽  
Author(s):  
Brian Warner ◽  
Patrick A. Woudt

AbstractThere are now four dwarf novae known with white dwarf primaries that show large amplitude non-radial oscillations of the kind seen in ZZ Cet stars. We compare the properties of these stars and point out that by the end of the Sloan Digital Sky Survey more than 30 should be known.


1992 ◽  
Vol 135 ◽  
pp. 170-172
Author(s):  
Daniel M. Popper

The Hamilton CCD-echelle spectrometer at the coudé focus of the 3-m Shane telescope of the Lick observatory has been described by Vogt (1987). Illustrations of some binary star spectra obtained with this instrument are given by Popper & Nelson (1990, B-type binaries with large magnitude differences) and by Popper (1992, G-type eclipsing binaries), where typical cross-correlation functions are also shown.In this progress report, I give some initial preliminary orbital results. First is the bright early B binary, VV Ori, the orbits of which have been the subject of considerable controversy (Duerbeck 1975, Andersen 1976, Popper 1981). According to Chambliss & Leung (1982) and to the line ratios, the secondary component contributes about 10% of the light of the system in the visual region. Multiple (2 to 4) exposures of VV Ori have been obtained with the Hamilton on 7 nights. Velocities of the primary are determined from 13 lines, primarily of OII and HeI between 440 and 590 nm. The only lines found to be useful for the secondary are HeI 597.5 and 492.1. Analysis of the velocities is complicated by the poorly determined variation of the center-of-mass velocity, with a range of roughly 26 km s−1 and a period of roughly 120 days (e.g., Duerbeck 1975). Preliminary orbits based on this material lead to masses 11.1 and 4.7.M⊙, to be compared to Duerbeck’s values of 7.7 and 3.4. It is primarily the high signal/noise ratio, over 600, that enables this study to be carried out satisfactorily.


1995 ◽  
Vol 10 ◽  
pp. 597-598
Author(s):  
R. Wehrse

An accretion disk is formed when matter with angular momentum is flowing on a gravitating object (as e.g. a white dwarf, a neutron star, a young stellar object, or a black bole). It radiates because the transport of angular momentum (required for the matter to reach the central object) necessarily implies the conversion of potential energy into a form of energy that corresponds to higher entropy. Many aspects of the physics (as e.g. the mechanism for the heat generation) are not yet well understood but they are presently one of the centers of astronomical interest (see e.g. the books by Frank, King, and Raine, 1992, or by Wheeler, 1993).


1980 ◽  
Vol 5 ◽  
pp. 255-262
Author(s):  
Jesse L. Greenstein

Extensive mass loss is observed for hot subluminous stars, through P Cygni lines in the ultraviolet. This persists in some sub-dwarf 0 stars, but is generally not observed in white dwarfs. The ultraviolet provides determination of effective temperatures. Among nine sdO’s, the maximum temperature reported is definitely below 60, 000 K; an object at 100, 000 K would be distinguishable. The sdO’s show a wide variety of line strengths, notably in N V, C IV and Si TV, as well as He II. One halo sdB is reported as rich in peculiar elements; it shows anomalous N V for its temperature. The comparison of effective temperatures of white dwarfs observed from space and from the ground gives excellent agreement. The hottest white dwarfs are near 60, 000 K, although one (helium-rich) reaches 80, 000 K. Another helium-rich close binary probably has an accretion disk; it is the only white dwarf to show the expanding shell of N V, C IV, Si IV characteristic of some subdwarfs. Two magnetic white dwarfs have been observed; one has strong unidentifiable features and the smallest known radius.


2004 ◽  
Vol 194 ◽  
pp. 228-228
Author(s):  
T. Nagel ◽  
S. Dreizler ◽  
T. Rauch ◽  
K. Werner

We have developed a new code for the calculation of synthetic spectra and vertical structures of accretion disks in cataclysmic variables and compact X-ray binaries. Here we present results for the CV system AM CVn.AM CVn stars are a special type of cataclysmic variables, also called helium cataclysmics. They are systems of interacting binary white dwarfs, consisting of a degenerate C-O white dwarf primary and a low mass semi-degenerate secondary. The secondary loses mass, almost, pure helium, to the primary, forming an accretion disk. They have all in common a helium-rich composition, analoguous to the hydrogen-rich cataclysmic variables. They show photometric variabilities on time scales of ~ 1000s, the prototype of the class, AM CVn, e.g. exhibits a variability of ~ 18 min (Nelemans et al. 2001).


2019 ◽  
Vol 629 ◽  
pp. L6 ◽  
Author(s):  
Santiago Torres ◽  
Carles Cantero ◽  
María E. Camisassa ◽  
Teresa Antoja ◽  
Alberto Rebassa-Mansergas ◽  
...  

Aims. We analyzed the velocity space of the thin- and thick-disk Gaia white dwarf population within 100 pc by searching for signatures of the Hercules stellar stream. We aimed to identify objects belonging to the Hercules stream, and by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. Methods. We applied a kernel density estimation to the UV velocity space of white dwarfs. For the region where a clear overdensity of stars was found, we created a 5D space of dynamic variables. We applied a hierarchichal clustering method, HDBSCAN, to this 5D space, and identified those white dwarfs that share similar kinematic characteristics. Finally, under general assumptions and from their photometric properties, we derived an age estimate for each object. Results. The Hercules stream was first revealed as an overdensity in the UV velocity space of the thick-disk white dwarf population. Three substreams were then found: Hercules a and Hercules b, formed by thick-disk stars with an age distribution that peaked 4 Gyr in the past and extends to very old ages; and Hercules c, with a ratio of 65:35 of thin to thick stars and a more uniform age distribution that is younger than 10 Gyr.


1984 ◽  
Vol 86 ◽  
pp. 59-66
Author(s):  
R. Mewe

With the 500 and 1000 l/mm transmission gratings aboard the European x-ray Observatory SATellite (EXOSAT) we have measured medium-resolution (Δλ 5 A at 100 A) spectra of some ten objects of various categories such as isolated white dwarfs, cool stars with convective mantles, cataclysmic variables (e.g. AM Her) and a high-luminosity X-ray source (Sco X-1).The Instrument configuration was mostly such that one low-energy telescope was used as a photometer, while the other telescope was used as a spectrometer with the 500 l/mm grating inserted.The white dwarf spectra were measured between about 60 and 300 A. They show a continuum with no clear evidence of aborption and emission lines except for the He II absorption edge at 227 A in the spectrum of Feige 24. For the cooler (28 000 K) white dwarf Sirius B the emission is peaked between about 100 and 160 A and limited to about 200 A. which can be expected from atmospheric model spectra of DA white dwarfs. The soft X-ray emission of the hotter (> 60 000 K) DA white dwarfs (HZ43. Feige 24) is also interpreted in terms of photospheric emission. In the HZ43 spectrum the absorption edge is apparently absent which sets a stringent upper limit to the abundance ratio He/H of about 10−5. On the other hand the spectrum of Feige 24 shows a dominant absorption edge, implying He/H > 10−3. Moreover, here the shape of the continuum may be indicative of a stratification of element abundances in the outer atmosphere.


Sign in / Sign up

Export Citation Format

Share Document