scholarly journals Masses and Magnetic Fields of White Dwarfs in Cataclysmic Variables

1989 ◽  
Vol 114 ◽  
pp. 337-340
Author(s):  
J.P. Lasota ◽  
J.M. Hameury ◽  
A.R. King

We show that the existence of the AM Her period spike implies (i) a unique white dwarf mass ≃ 0.6 − 0.7M⊙ for most magnetic CV’s (ii) nova explosions remove exactly the accreted mass from magnetic white dwarfs, and (iii) the maximum magnetic field for most CV’s is ≤ 4 × 107 G. The existence of the spike is very strong support for the idea that the period gap results from a drastic reduction of angular momentum losses when the secondary star becomes fully convective.

1998 ◽  
Vol 188 ◽  
pp. 97-100
Author(s):  
M. Ishida ◽  
R. Fujimoto

Accreting magnetic white dwarfs are usually found as component stars in Magnetic Cataclysmic Variables (MCVs), in which a white dwarf with B = 105-8 G accepts mass from a late type (secondary) star via Roche Lobe overflow. Matter from the secondary is funneled by the magnetic field and concentrates on the magnetic pole(s) of the white dwarf. Since the accretion flow becomes highly supersonic, a standing shock wave is formed close to the white dwarf. The temperature of the plasma at the shock front reflects the gravitational potential and can be denoted as a function of the mass (M) and the radius (R) of the white dwarf as: Note here that the height of the shock is expected to be within 10% of the white dwarf radius, and hence neglected here.


Author(s):  
David J Wilson ◽  
Odette Toloza ◽  
John D Landstreet ◽  
Boris T Gänsicke ◽  
Jeremy J Drake ◽  
...  

Abstract We present the discovery of a magnetic field on the white dwarf component in the detached post common envelope binary (PCEB) CC Cet. Magnetic white dwarfs in detached PCEBs are extremely rare, in contrast to the high incidence of magnetism in single white dwarfs and cataclysmic variables. We find Zeeman-split absorption lines in both ultraviolet Hubble Space Telescope (HST) spectra and archival optical spectra of CC Cet. Model fits to the lines return a mean magnetic field strength of 〈|B|〉 ≈ 600–700 kG. Differences in the best-fit magnetic field strength between two separate HST observations and the high v sin  i of the lines indicate that the white dwarf is rotating with a period ∼0.5 hours, and that the magnetic field is not axisymmetric about the spin axis. The magnetic field strength and rotation period are consistent with those observed among the intermediate polar class of cataclysmic variable, and we compute stellar evolution models that predict CC Cet will evolve into an intermediate polar in 7–17 Gyr. Among the small number of known PCEBs containing a confirmed magnetic white dwarf, CC Cet is the hottest (and thus youngest), with the weakest field strength, and cannot have formed via the recently proposed crystallisation/spin-up scenario. In addition to the magnetic field measurements, we update the atmospheric parameters of the CC Cet white dwarf via model spectra fits to the HST data and provide a refined orbital period and ephemeris from TESS photometry.


2004 ◽  
Vol 215 ◽  
pp. 551-560 ◽  
Author(s):  
Sumner Starrfield ◽  
Edward M. Sion ◽  
Paula Szkody

Cataclysmic Variables are binary star systems and so are closely connected to the subject of this meeting. The stars revolve around the center of mass of the system. The gas lost by the secondary through the inner Lagrangian point enters the Roche lobe of the white dwarf with the angular momentum of the L1 point and, therefore, forms an accretion disk which rotates around the white dwarf. The gas must lose angular momentum to fall onto the white dwarf, and the white dwarf itself must rotate as it accretes infalling material and angular momentum and is gradually spun up. We will review what is known about these phenomena, and emphasize the new results about the white dwarfs that have been learned in the past few years.


2012 ◽  
Vol 27 (15) ◽  
pp. 1250084 ◽  
Author(s):  
ARITRA KUNDU ◽  
BANIBRATA MUKHOPADHYAY

In recent years a number of white dwarfs have been observed with very high surface magnetic fields. We can expect that the magnetic field in the core of these stars would be much higher (~1014 G ). In this paper, we analytically study the effect of high magnetic field on relativistic cold electron, and hence its effect on the stability and the mass–radius relation of a magnetic white dwarf. In strong magnetic fields, the equation of state of the Fermi gas is modified and Landau quantization comes into play. For relatively very high magnetic fields (with respect to the average energy density of matter) the number of Landau levels is restricted to one or two. We analyze the equation of states for magnetized electron degenerate gas analytically and attempt to understand the conditions in which transitions from the zeroth Landau level to first Landau level occurs. We also find the effect of the strong magnetic field on the star collapsing to a white dwarf, and the mass–radius relation of the resulting star. We obtain an interesting theoretical result that it is possible to have white dwarfs with mass more than the mass set by Chandrasekhar limit.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Srishty Aggarwal ◽  
Banibrata Mukhopadhyay ◽  
Gianluca Gregori

We investigate the two-dimensional motion of relativistic cold electrons in the presence of `strictly’ spatially varying magnetic fields satisfying, however, no magnetic monopole condition. We find that the degeneracy of Landau levels, which arises in the case of the constant magnetic field, lifts out when the field is variable and the energy levels of spin-up and spin-down electrons align in an interesting way depending on the nature of change of field. Also, the varying magnetic field splits Landau levels of electrons with zero angular momentum from positive angular momentum, unlike the constant field which only can split the levels between positive and negative angular momenta. Exploring Landau quantization in non-uniform magnetic fields is a unique venture on its own and has interdisciplinary implications in the fields ranging from condensed matter to astrophysics to quantum information. As examples, we show magnetized white dwarfs, with varying magnetic fields, involved simultaneously with Lorentz force and Landau quantization affecting the underlying degenerate electron gas, exhibiting a significant violation of the Chandrasekhar mass-limit; and an increase in quantum speed of electrons in the presence of a spatially growing magnetic field.


1997 ◽  
Vol 163 ◽  
pp. 771-772
Author(s):  
T. Naylor ◽  
M.W. Somers

Classical nova outbursts are thermonuclear explosions on the surfaces of the white dwarfs in cataclysmic variables. The explosion heats the surface layers of the white dwarf, which are expected to cool on a timescale of a hundred years. The hot white dwarf should have two obvious effects on the system.(1)It will heat the surface of the accretion disc and secondary star, increasing the overall luminosity of the system.(2)By irradiating the surface of the secondary star it may bloat it and drive more mass transfer, thus again increasing the overall luminosity.


2020 ◽  
Vol 498 (3) ◽  
pp. 3457-3469
Author(s):  
A W Shaw ◽  
C O Heinke ◽  
K Mukai ◽  
J A Tomsick ◽  
V Doroshenko ◽  
...  

ABSTRACT The hard X-ray spectrum of magnetic cataclysmic variables can be modelled to provide a measurement of white dwarf mass. This method is complementary to radial velocity measurements, which depend on the (typically rather uncertain) binary inclination. Here, we present results from a Legacy Survey of 19 magnetic cataclysmic variables with NuSTAR. We fit accretion column models to their 20–78 keV spectra and derive the white dwarf masses, finding a weighted average $\bar{M}_{\rm WD}=0.77\pm 0.02$ M⊙, with a standard deviation σ = 0.10 M⊙, when we include the masses derived from previous NuSTAR observations of seven additional magnetic cataclysmic variables. We find that the mass distribution of accreting magnetic white dwarfs is consistent with that of white dwarfs in non-magnetic cataclysmic variables. Both peak at a higher mass than the distributions of isolated white dwarfs and post-common-envelope binaries. We speculate as to why this might be the case, proposing that consequential angular momentum losses may play a role in accreting magnetic white dwarfs and/or that our knowledge of how the white dwarf mass changes over accretion–nova cycles may also be incomplete.


2019 ◽  
Vol 489 (3) ◽  
pp. 3648-3654 ◽  
Author(s):  
Mukremin Kilic ◽  
B Rolland ◽  
P Bergeron ◽  
Z Vanderbosch ◽  
P Benni ◽  
...  

ABSTRACT G183−35 is an unusual white dwarf that shows an H α line split into five components, instead of the usual three components seen in strongly magnetic white dwarfs. Potential explanations for the unusual set of lines include a double degenerate system containing two magnetic white dwarfs and/or rotational modulation of a complex magnetic field structure. Here, we present time-resolved spectroscopy of G183−35 obtained at the Gemini Observatory. These data reveal two sets of absorption lines that appear and disappear over a period of about 4 h. We also detect low-level (0.2 per cent) variability in optical photometry at the same period. We demonstrate that the spectroscopic and photometric variability can be explained by the presence of spots on the surface of the white dwarf and a change in the average field strength from about 4.6 to 6.2 MG. The observed variability is clearly due to G183−35’s relatively short spin period. However, rotational modulation of a complex magnetic field by itself cannot explain the changes seen in the central H α component. An additional source of variability in the line profiles, most likely due to a chemically inhomogeneous surface composition, is also needed. We propose further observations of similar objects to test this scenario.


1987 ◽  
Vol 93 ◽  
pp. 47-51
Author(s):  
E.M. Sion

AbstractWith the recent detection of direct white dwarf photospheric radiation from certain cataclysmic variables in quiescent (low accretion) states, important implications and clues about the nature and long-term evolution of cataclysmic variables can emerge from an analysis of their physical properties. Detection of the underlying white dwarfs has led to a preliminary empirical CV white dwarf temperature distribution function and, in a few cases, the first detailed look at a freshly accreted while dwarf photosphere. The effective temperatures of CV white dwarfs plotted versus orbital period for each type of CV appears to reveal a tendency for the cooler white dwarf primaries to reside in the shorter period systems. Possible implications are briefly discussed.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


Sign in / Sign up

Export Citation Format

Share Document