scholarly journals Star Formation History in the Fornax Dwarf Galaxy from HST data

1999 ◽  
Vol 192 ◽  
pp. 174-178 ◽  
Author(s):  
G. Marconi ◽  
R. Buonanno ◽  
M. Castellani ◽  
C. E. Corsi ◽  
R. Zinn

Using observations from the Hubble Space Telescope archive, color-magnitude diagrams have been constructed for globular Cluster 4 in the Fornax dSph galaxy and its surrounding field. These diagrams extend below the main-sequence turnoffs and have yielded measurements of the ages of the populations. In particular, from our analysis Cluster 4 shows [Fe/H] ≃ 2.0, a value significantly lower than that derived for the Fornax field ([Fe/H] ≃ −1.40). Putting our results in the frame of the findings of Buonanno et al. (1998) for the Fornax clusters 1, 2, 3 and 5, a global analysis of the properties of Fornax stellar populations has been performed.

2018 ◽  
Vol 14 (S344) ◽  
pp. 77-80
Author(s):  
Seyed Azim Hashemi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon

AbstractDetermining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour–magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age–metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC1613 over the past 5 Gyr.


2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2008 ◽  
Vol 4 (S256) ◽  
pp. 269-274
Author(s):  
Noelia E. D. Noël ◽  
Antonio Aparicio ◽  
Carme Gallart ◽  
Sebastián L. Hidalgo ◽  
Edgardo Costa ◽  
...  

AbstractWe present a quantitative analysis of the star formation history (SFH) of 12 fields in the Small Magellanic Cloud (SMC) based on unprecedented deep [(B–R),R] color—magnitude diagrams (CMDs) from Noël et al. (2007). Our fields reach down to the oldest main sequence (MS) turnoff with high photometric accuracy, which is vital for obtaining accurate SFHs. We use the IAC-pop code (Aparicio & Hidalgo 2009) to obtain the SFH, using a single CMD generated using IAC-star (Aparicio & Gallart 2004). We find that there are three main periods of enhancement of star formation: a young one peaked at ~0.2–0.5 Gyr old, only present in the eastern and in the central-most fields; one at intermediate ages, peaked at ~4–5 Gyr old in all fields; and an old one, peaked at ~10 Gyr in all the fields but the western ones, in which this old enhancement splits into two, peaked at ~8 Gyr old and at ~12 Gyr old. This “two-enhancement” zone seems to be a robust feature since it is unaffected when using different stellar evolutionary libraries, implying that stars in the SMC take a Hubble time or more to mix. This indicates that there was a global enhancement in ψ(t) at ~4–5 Gyr ago in the SMC. We also find that the age of the old population is similar at all radii and at all azimuth and we constrain the age of this oldest population to be older than ~11.5 Gyr old. The intermediate-age population, in turn, presents variations with both, radii and azimuth. Theoretical studies based on results from larger spatial areas are needed to understand the origin of the young gradient. This young component is highly affected by interactions between Milky Way/LMC/SMC. We do not find yet a region dominated by an old, Milky Way-like, halo at 4.5 kpc from the SMC center, indicating either that this old stellar halo does not exist in the SMC or that its contribution to the stellar populations, at the galactocentric distances of our outermost field, is negligible.


2019 ◽  
Vol 490 (4) ◽  
pp. 5538-5550 ◽  
Author(s):  
Saundra M Albers ◽  
Daniel R Weisz ◽  
Andrew A Cole ◽  
Andrew E Dolphin ◽  
Evan D Skillman ◽  
...  

ABSTRACT We present the star formation history (SFH) of the isolated (D ∼ 970 kpc) Local Group dwarf galaxy Wolf–Lundmark–Melotte (WLM) measured from colour–magnitude diagrams (CMDs) constructed from deep Hubble Space Telescope imaging. Our observations include a central ($0.5 \, r_h$) and outer field ($0.7 \, r_h$) that reach below the oldest main-sequence turn-off. WLM has no early dominant episode of star formation: 20 per cent of its stellar mass formed by ∼12.5 Gyr ago ($z$ ∼ 5). It also has an SFR that rises to the present with 50 per cent of the stellar mass within the most recent 5 Gyr ($z$ < 0.7). There is evidence of a strong age gradient: the mean age of the outer field is 5 Gyr older than the inner field despite being only 0.4 kpc apart. Some models suggest such steep gradients are associated with strong stellar feedback and dark-matter core creation. The SFHs of real isolated dwarf galaxies and those from the Feedback in Realistic Environment suite are in good agreement for M⋆($z$ = 0) ∼ 107–109M⊙, but in worse agreement at lower masses ($M_{\star }(z=0) \sim 10^5\!-\!10^7 \, \mathrm{M}_{\odot }$). These differences may be explainable by systematics in the models (e.g. reionization model) and/or observations (HST field placement). We suggest that a coordinated effort to get deep CMDs between HST/JWST (crowded central fields) and WFIRST (wide-area halo coverage) is the optimal path for measuring global SFHs of isolated dwarf galaxies.


2016 ◽  
Vol 830 (1) ◽  
pp. 3 ◽  
Author(s):  
E. Sacchi ◽  
F. Annibali ◽  
M. Cignoni ◽  
A. Aloisi ◽  
T. Sohn ◽  
...  

2002 ◽  
Vol 207 ◽  
pp. 138-139
Author(s):  
L.M. Freyhammer ◽  
Jørgen Otzen Petersen

The complicated star formation history of the most massive globular cluster in our Galaxy — ω Centauri — is seen as a presence of an asymmetric spatial distribution of two stellar populations having different ages and metallicities. The cluster hosts the largest known sample of Population II δ Sct variables, or SX Phœnicis stars, which are valuable Galactic and extragalactic distance estimators. We discuss the applicability of these variables for estimating distances to the cluster, and compare different techniques for the critical identifications of oscillation modes.


1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi

Sign in / Sign up

Export Citation Format

Share Document