A Search for Brown Dwarfs in the Alpha Persei Cluster

2003 ◽  
Vol 211 ◽  
pp. 179-180
Author(s):  
Nicolas Lodieu ◽  
Mark McCaughrean ◽  
Jérôme Bouvier ◽  
David Barrado y Navascués ◽  
John R. Stauffer

We present preliminary results from a deep near-infrared survey of a ~ 1 square degree area in the young open cluster Alpha Persei using the wide-field Omega-Prime camera on the Calar Alto 3.5m telescope, yielding a list of new low-mass cluster members, including brown dwarf candidates.

2019 ◽  
Vol 486 (1) ◽  
pp. 1260-1282 ◽  
Author(s):  
Z H Zhang (张曾华) ◽  
A J Burgasser ◽  
M C Gálvez-Ortiz ◽  
N Lodieu ◽  
M R Zapatero Osorio ◽  
...  

ABSTRACT We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy , and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near-infrared spectra obtained with the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed K-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed K-band flux. We studied the spectral-type–colour correlations, spectral-type–absolute magnitude correlations, colour–colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L–T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.


2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


2001 ◽  
Vol 134 (1) ◽  
pp. 103-114 ◽  
Author(s):  
David Barrado y Navascues ◽  
John R. Stauffer ◽  
Cesar Briceno ◽  
Brian Patten ◽  
Nigel C. Hambly ◽  
...  

2003 ◽  
Vol 211 ◽  
pp. 163-170 ◽  
Author(s):  
John R. Stauffer ◽  
David Barrado y Navascués ◽  
Jerome Bouvier ◽  
Nicholas Lodieu ◽  
Mark McCaughrean

We have obtained a new, deep, wide-field optical imaging survey of the young Alpha Persei cluster which reveals a well-populated lower main sequence extending into the substellar mass regime. Subsequent infrared photometry confirms that most of the candidate brown dwarfs are indeed likely to be cluster members, with a predicted minimum mass of order 0.035 solar masses. We have combined the new candidate list with previous member catalogs to derive an IMF for Alpha Per; the slope of the IMF at the low mass end is α ~ 0.66. The Alpha Per IMF slope is thus very similar to that found in the Pleiades.


2008 ◽  
Vol 136 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Juan José Downes ◽  
César Briceño ◽  
Jesús Hernández ◽  
Nuria Calvet ◽  
Lee Hartmann ◽  
...  

2020 ◽  
Vol 499 (4) ◽  
pp. 5318-5324
Author(s):  
S L Casewell ◽  
J Debes ◽  
I P Braker ◽  
M C Cushing ◽  
G Mace ◽  
...  

ABSTRACT We present Spitzer observations at 3.6 and 4.5 µm and a near-infrared IRTF SpeX spectrum of the irradiated brown dwarf NLTT5306B. We determine that the brown dwarf has a spectral type of L5 and is likely inflated, despite the low effective temperature of the white dwarf primary star. We calculate brightness temperatures in the Spitzer wavebands for both the model radius, and Roche Lobe radius of the brown dwarf, and conclude that there is very little day–night side temperature difference. We discuss various mechanisms by which NLTT5306B may be inflated, and determine that while low-mass brown dwarfs (M < 35 MJup) are easily inflated by irradiation from their host star, very few higher mass brown dwarfs are inflated. The higher mass brown dwarfs that are inflated may be inflated by magnetic interactions or may have thicker clouds.


2003 ◽  
Vol 211 ◽  
pp. 269-270
Author(s):  
M Goto ◽  
A.T. Tokunaga ◽  
M. Cushing ◽  
D. Potter ◽  
N. Kobayashi ◽  
...  

We present near-infrared spectroscopy of low-mass companions in the HD 130948 system (Goto et al. 2002a). Adaptive optics on the Subaru Telescope allowed for spectroscopy of the individual components of the 0″.13 binary system. Based on a direct comparison with a series of template spectra, we determined the spectral types of HD 130948B and C to be L4 ± 1. We find they are most likely a binary brown dwarf system.


2016 ◽  
Vol 457 (1) ◽  
pp. 1028-1036 ◽  
Author(s):  
Najmeh Sheikhi ◽  
Maryam Hasheminia ◽  
Pouria Khalaj ◽  
Hosein Haghi ◽  
Akram Hasani Zonoozi ◽  
...  

Abstract We have obtained membership probabilities of stars within a field of ${\sim }3\deg$ from the centre of the open cluster Alpha Persei using proper motions and photometry from the PPMXL and Wide-field Infrared Survey Explorer catalogues. We have identified 810 possible stellar members of Alpha Persei. We derived the global and radial present-day mass function (MF) of the cluster and found that they are well matched by two-stage power-law relations with different slopes at different radii. The global MF of Alpha Persei shows a turnover at m = 0.62 M⊙ with low- and high-mass slopes of αlow = 0.50 ± 0.09 (0.1 < m/ M⊙ < 0.62) and αhigh = 2.32 ± 0.14 (0.62 ≤ m/ M⊙ < 4.68), respectively. The high-mass slope of the cluster increases from 2.01 inside 1$_{.}^{\circ}$10 to 2.63 outside 2$_{.}^{\circ}$2, whereas the mean stellar mass decreases from 0.95 to 0.57 M⊙ in the same regions, signifying clear evidence of mass segregation in the cluster. From an examination of the high-quality colour–magnitude data of the cluster and performing a series of Monte Carlo simulations, we obtained a binary fraction of fbin = 34 ± 12 per cent for stars with 0.70 < m/ M⊙ < 4.68. This is significantly larger than the observed binary fraction, indicating that this open cluster contains a large population of unresolved binaries. Finally, we corrected the MF slopes for the effect of unresolved binaries and found low- and high-mass slopes of αlow = 0.89 ± 0.11 and αhigh = 2.37 ± 0.09 and a total cluster mass of 352 M⊙ for Alpha Persei.


2006 ◽  
Vol 2 (S237) ◽  
pp. 485-485
Author(s):  
Mario E. van den Ancker

AbstractWe study the star formation history of the galactic young open cluster NGC 6231 using new, deep, wide-field BVRI imaging. Contrary to previous suggestions, we do not find a lack of low-mass cluster members; our derived mass function is compatible with a Salpeter IMF. The star formation history of NGC 6231 appears to be bi-modal, with a first wave of star formation activity 3–5 Myr ago, followed by a new generation of stars forming ~ 1 Myr ago.


Sign in / Sign up

Export Citation Format

Share Document