scholarly journals Spectroscopic Observations of the Far Ultraviolet Background

1990 ◽  
Vol 139 ◽  
pp. 223-224
Author(s):  
Christopher Martin ◽  
Mark Hurwitz ◽  
Stuart Bowyer

We report on results from the Berkeley Ultraviolet Experiment (UVX), which performed 15 ± 2 Å resolution spectroscopy of the diffuse far ultraviolet background in eight directions. We have used the spectrum obtained in the direction of low H I column density to derive constraints on any extragalactic background. We find evidence that a hitherto unidentified dust component is present that accounts for most of the background in directions of low neutral hydrogen column density.

1986 ◽  
Vol 6 (2) ◽  
pp. 91-94
Author(s):  
J.L. Linsky, ◽  
W.B. Landsman ◽  
B.D. Savage ◽  
S.R. Heap ◽  
A.M. Smith ◽  
...  

2019 ◽  
Vol 623 ◽  
pp. A92 ◽  
Author(s):  
J. Selsing ◽  
D. Malesani ◽  
P. Goldoni ◽  
J. P. U. Fynbo ◽  
T. Krühler ◽  
...  

In this work we present spectra of all γ-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31/03/2017. In total, we have obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. Based on a set of observational selection criteria that minimise biases with regards to intrinsic properties of the GRBs, the follow-up effort has been focused on producing a homogeneously selected sample of 93 afterglow spectra for GRBs discovered by the Swift satellite. We here provide a public release of all the reduced spectra, including continuum estimates and telluric absorption corrections. For completeness, we also provide reductions for the 18 late-time observations of the underlying host galaxies. We provide an assessment of the degree of completeness with respect to the parent GRB population, in terms of the X-ray properties of the bursts in the sample and find that the sample presented here is representative of the full Swift sample. We have constrained the fraction of dark bursts to be <28 per cent and confirm previous results that higher optical darkness is correlated with increased X-ray absorption. For the 42 bursts for which it is possible, we have provided a measurement of the neutral hydrogen column density, increasing the total number of published HI column density measurements by ∼33 per cent. This dataset provides a unique resource to study the ISM across cosmic time, from the local progenitor surroundings to the intervening Universe.


2009 ◽  
Vol 5 (S267) ◽  
pp. 106-106
Author(s):  
Lin-wen Chen ◽  
Li-Ting Hsu

Type 2 QSOs (QSO2s) are intrinsically luminous QSOs embedded in dusty environments. In this work, we study the radio, optical, and soft X-ray properties of 887 optically selected [O III]-based QSO2s (Reyes et al. 2008) at z<0.83 to investigate the connection between QSO2s and their environments. We use SDSS data to measure the luminosity-limited galaxy counts in a volume centered on each QSO2 and defined by Δ z<0.1 (based on photometric redshifts) and within a projected distance of 1.5 Mpc of the QSO2 (δ1.5Mpc). We used ROSAT All Sky Survey (RASS) data to estimate the X-ray excess. Hsu & Chen (2010), after correcting for Galactic absorption, obtain a lower limit for the intrinsic neutral hydrogen column density (NH) toward each of the QSO2s. About 50% of these sources have NH > 1022 cm−2. We take this value as a threshold to subdivide QSO2s into high- and low-NH groups, and compare their environments. The distributions δ1.5Mpc of the two populations show that, in regions of higher galaxy density, QSO2s are dominated by the high-NH population (Figure 1), suggesting a closer connection between more obscured QSO2s and surrounding galaxies.


2020 ◽  
Vol 495 (2) ◽  
pp. 2342-2353
Author(s):  
Tony Dalton ◽  
Simon L Morris

ABSTRACT It is known that the GRB equivalent hydrogen column density (NHX) changes with redshift and that, typically, NHX is greater than the GRB host neutral hydrogen column density. We have compiled a large sample of data for GRB NHX and metallicity [X/H]. The main aims of this paper are to generate improved NHX for our sample by using actual metallicities, dust corrected where available for detections, and for the remaining GRB, a more realistic average intrinsic metallicity using a standard adjustment from solar. Then, by approximating the GRB host intrinsic hydrogen column density using the measured neutral column (NHI, IC) adjusted for the ionization fraction, we isolate a more accurate estimate for the intergalactic medium (IGM) contribution. The GRB sample mean metallicity is = −1.17 ± 0.09 rms (or 0.07 ± 0.05 Z/Zsol) from a sample of 36 GRB with a redshift 1.76 ≤ z ≤ 5.91, substantially lower than the assumption of solar metallicity used as standard for many fitted NHX. Lower GRB host mean metallicity results in increased estimated NHX with the correction scaling with redshift as Δlog (NHX cm−2) = (0.59 ± 0.04)log(1 + z) + 0.18 ± 0.02. Of the 128 GRB with data for both NHX and NHI, IC in our sample, only six have NHI, IC &gt; NHX when revised for realistic metallicity, compared to 32 when solar metallicity is assumed. The lower envelope of the revised NHX – NHI, IC, plotted against redshift can be fit by log(NHX – NHI, IC cm−2) = 20.3 + 2.4 log(1 + z). This is taken to be an estimate for the maximum IGM hydrogen column density as a function of redshift. Using this approach, we estimate an upper limit to the hydrogen density at redshift zero (n0) to be consistent with n0 = 0.17 × 10−7cm−3.


1990 ◽  
Vol 139 ◽  
pp. 171-183 ◽  
Author(s):  
Stuart Bowyer

Measurements of the far ultraviolet background are reviewed. A major turning point occurred in the study of this field in the early 1980s, when evidence was first presented that this flux was primarily galactic in origin rather than extragalactic, as had been generally believed. A number of experiments have confirmed this result, and it has been established that the flux is the result of scattering of starlight by dust. However, the detailed scattering properties of dust in the far ultraviolet are uncertain; a wide range of albedos and scattering phase functions have been reported. Very recent evidence indicates that ultraviolet scattering grains are different from grains that scatter in the visible in that they have a low albedo and scatter isotropically. There is evidence that this dust is present at some level in all view directions in the galaxy. Spectral emission features have been detected recently in the diffuse background. Lines of C IV and O III] have been observed and lines of O IV/Si IV and N III have probably been observed. It has been established that the 105 K gas producing these lines is 2–3 kpc above the galactic plane. Overall mass flux rates of 5 to 25 M⊙ yr−1 for this gas are indicated, which provides strong support for the galactic fountain model for this material. Emission from molecular hydrogen has been detected in directions of high and low neutral hydrogen column density. This emission emanates from low density molecular clouds and indicates clumping of the emitting material in the clouds. Our knowledge of the sources of the far ultraviolet background has increased dramatically in the past 10 years. The results obtained have yielded surprising new insights on a variety of astrophysical topics.


1997 ◽  
Vol 166 ◽  
pp. 75-78
Author(s):  
M. Gölz ◽  
N. Kappelmann ◽  
I. Appenzeller ◽  
J. Barnstedt ◽  
A. Fromm ◽  
...  

AbstractDuring the second flight of the ORFEUS-SPAS satellite (Nov./Dec. 96) high resolution (λ/∆λ = 10,000) Echelle-spectra of BD+28° 4211 in the wavelength regime 912–1400 Å have been taken. Deuterium can be clearly identified in the ORFEUSII Echelle-spectra of this star. For the first time it was possible to take spectra of faint, not redshifted objects in the far ultraviolet with a sufficient spectral resolution to study the deuterium column density in the whole spectral range of the Lyman-series down to the Lyman-limit. We obtained a value of log(ND) = 14.7 (±0.3) towards BD+28° 4211. The hydrogen column density has been determined using ORFEUS Echelle- and IUE-spectra of Ly-α (log(NH) = 19.8 (±0.2)). Thus a value of 8 × 10−6 can be obtained for the D/H-ratio on the line-of-sight towards BD+28° 4211.


1997 ◽  
Vol 166 ◽  
pp. 57-60
Author(s):  
Eric J. Korpela ◽  
Stuart Bowyer

AbstractWe present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in July, 1992. The DUVE spectrometer, which covers the band from 950 Å to 1080 Å with 3.2 Å resolution, observed a region of low neutral hydrogen column density near the south galactic pole for a total effective integration time of 1583 seconds, the only emission line detected was a geocoronal hydrogen line at 1025 Å . We were able to place upper limits to several emission features that provide constraints to interstellar plasma parameters. We were also able to place continuum limits in this band. We use these upper limits to place constraints upon the emission measure vs. temperature distribution of this gas using an isothermal Landini and Fossi model.


Author(s):  
H Dénes ◽  
P A Jones ◽  
L V Tóth ◽  
S Zahorecz ◽  
B-C Koo ◽  
...  

Abstract The afterglow of a gamma ray burst (GRB) can give us valuable insight into the properties of its host galaxy. To correctly interpret the spectra of the afterglow we need to have a good understanding of the foreground interstellar medium (ISM) in our own Galaxy. The common practice to correct for the foreground is to use neutral hydrogen (H i) data from the Leiden/Argentina/Bonn (LAB) survey. However, the poor spatial resolution of the single dish data may have a significant effect on the derived column densities. To investigate this, we present new high-resolution H i observations with the Australia Telescope Compact Array (ATCA) towards 4 GRBs. We combine the interferometric ATCA data with single dish data from the Galactic All Sky Survey (GASS) and derive new Galactic H i column densities towards the GRBs. We use these new foreground column densities to fit the Swift XRT X-ray spectra and calculate new intrinsic hydrogen column density values for the GRB host galaxies. We find that the new ATCA data shows higher Galactic H i column densities compared to the previous single dish data, which results in lower intrinsic column densities for the hosts. We investigate the line of sight optical depth near the GRBs and find that it may not be negligible towards one of the GRBs, which indicates that the intrinsic hydrogen column density of its host galaxy may be even lower. In addition, we compare our results to column densities derived from far-infrared data and find a reasonable agreement with the H i data.


Sign in / Sign up

Export Citation Format

Share Document