Addiction: Taking the brain seriously

1996 ◽  
Vol 19 (4) ◽  
pp. 582-582
Author(s):  
Steven E. Hyman

AbstractHeyman's target article is an analytical tour de force, but it makes too hard a distinction between voluntary and driven behavior. It is more fruitful to think about brain and behavior as shifting, interacting “agents,” represented by multiple neural circuits. This has the virtue of better connecting behavioral analysis with wet neuroscience.

2004 ◽  
Vol 16 (8) ◽  
pp. 1412-1425 ◽  
Author(s):  
Eric I. Knudsen

Experience exerts a profound influence on the brain and, therefore, on behavior. When the effect of experience on the brain is particularly strong during a limited period in development, this period is referred to as a sensitive period. Such periods allow experience to instruct neural circuits to process or represent information in a way that is adaptive for the individual. When experience provides information that is essential for normal development and alters performance permanently, such sensitive periods are referred to as critical periods. Although sensitive periods are reflected in behavior, they are actually a property of neural circuits. Mechanisms of plasticity at the circuit level are discussed that have been shown to operate during sensitive periods. A hypothesis is proposed that experience during a sensitive period modifies the architecture of a circuit in fundamental ways, causing certain patterns of connectivity to become highly stable and, therefore, energetically preferred. Plasticity that occurs beyond the end of a sensitive period, which is substantial in many circuits, alters connectivity patterns within the architectural constraints established during the sensitive period. Preferences in a circuit that result from experience during sensitive periods are illustrated graphically as changes in a “stability landscape,” a metaphor that represents the relative contributions of genetic and experiential influences in shaping the information processing capabilities of a neural circuit. By understanding sensitive periods at the circuit level, as well as understanding the relationship between circuit properties and behavior, we gain a deeper insight into the critical role that experience plays in shaping the development of the brain and behavior.


1985 ◽  
Vol 30 (12) ◽  
pp. 999-999
Author(s):  
Gerald S. Wasserman

2009 ◽  
Vol 212 (15) ◽  
pp. 2411-2418 ◽  
Author(s):  
K. W. Sockman ◽  
K. G. Salvante ◽  
D. M. Racke ◽  
C. R. Campbell ◽  
B. A. Whitman

2009 ◽  
Vol 106 (17) ◽  
pp. 7203-7208 ◽  
Author(s):  
Pei-Yu Wang ◽  
Anna Protheroe ◽  
Andrew N. Clarkson ◽  
Floriane Imhoff ◽  
Kyoko Koishi ◽  
...  

Many behavioral traits and most brain disorders are common to males and females but are more evident in one sex than the other. The control of these subtle sex-linked biases is largely unstudied and has been presumed to mirror that of the highly dimorphic reproductive nuclei. Sexual dimorphism in the reproductive tract is a product of Müllerian inhibiting substance (MIS), as well as the sex steroids. Males with a genetic deficiency in MIS signaling are sexually males, leading to the presumption that MIS is not a neural regulator. We challenge this presumption by reporting that most immature neurons in mice express the MIS-specific receptor (MISRII) and that male Mis−/− and Misrii−/− mice exhibit subtle feminization of their spinal motor neurons and of their exploratory behavior. Consequently, MIS may be a broad regulator of the subtle sex-linked biases in the nervous system.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2018 ◽  
Vol 133 ◽  
pp. 189-201 ◽  
Author(s):  
Laura Sánchez-Marín ◽  
David Ladrón de Guevara-Miranda ◽  
M. Carmen Mañas-Padilla ◽  
Francisco Alén ◽  
Román D. Moreno-Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document