scholarly journals Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.

2009 ◽  
Vol 106 (17) ◽  
pp. 7203-7208 ◽  
Author(s):  
Pei-Yu Wang ◽  
Anna Protheroe ◽  
Andrew N. Clarkson ◽  
Floriane Imhoff ◽  
Kyoko Koishi ◽  
...  

Many behavioral traits and most brain disorders are common to males and females but are more evident in one sex than the other. The control of these subtle sex-linked biases is largely unstudied and has been presumed to mirror that of the highly dimorphic reproductive nuclei. Sexual dimorphism in the reproductive tract is a product of Müllerian inhibiting substance (MIS), as well as the sex steroids. Males with a genetic deficiency in MIS signaling are sexually males, leading to the presumption that MIS is not a neural regulator. We challenge this presumption by reporting that most immature neurons in mice express the MIS-specific receptor (MISRII) and that male Mis−/− and Misrii−/− mice exhibit subtle feminization of their spinal motor neurons and of their exploratory behavior. Consequently, MIS may be a broad regulator of the subtle sex-linked biases in the nervous system.


Endocrinology ◽  
2005 ◽  
Vol 146 (4) ◽  
pp. 1650-1673 ◽  
Author(s):  
Jill B. Becker ◽  
Arthur P. Arnold ◽  
Karen J. Berkley ◽  
Jeffrey D. Blaustein ◽  
Lisa A. Eckel ◽  
...  

Abstract Female and male brains differ. Differences begin early during development due to a combination of genetic and hormonal events and continue throughout the lifespan of an individual. Although researchers from a myriad of disciplines are beginning to appreciate the importance of considering sex differences in the design and interpretation of their studies, this is an area that is full of potential pitfalls. A female’s reproductive status and ovarian cycle have to be taken into account when studying sex differences in health and disease susceptibility, in the pharmacological effects of drugs, and in the study of brain and behavior. To investigate sex differences in brain and behavior there is a logical series of questions that should be answered in a comprehensive investigation of any trait. First, it is important to determine that there is a sex difference in the trait in intact males and females, taking into consideration the reproductive cycle of the female. Then, one must consider whether the sex difference is attributable to the actions of gonadal steroids at the time of testing and/or is sexually differentiated permanently by the action of gonadal steroids during development. To answer these questions requires knowledge of how to assess and/or manipulate the hormonal condition of the subjects in the experiment appropriately. This article describes methods and procedures to assist scientists new to the field in designing and conducting experiments to investigate sex differences in research involving both laboratory animals and humans.


Endocrinology ◽  
2004 ◽  
Vol 145 (4) ◽  
pp. 1668-1677 ◽  
Author(s):  
Kiran K. Soma ◽  
Noel A. Alday ◽  
Michaela Hau ◽  
Barney A. Schlinger

Abstract Dehydroepiandrosterone (DHEA) is a precursor to sex steroids such as androstenedione (AE), testosterone (T), and estrogens. DHEA has potent effects on brain and behavior, although the mechanisms remain unclear. One possible mechanism of action is that DHEA is converted within the brain to sex steroids. 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) catalyzes the conversion of DHEA to AE. AE can then be converted to T and estrogen within the brain. We test the hypothesis that 3β-HSD is expressed in the adult brain in a region- and sex-specific manner using the zebra finch (Taeniopygia guttata), a songbird with robust sex differences in song behavior and telencephalic song nuclei. In zebra finch brain, DHEA is converted by 3β-HSD to AE and subsequently to estrogens and 5α- and 5β-reduced androgens. 3β-HSD activity is highest in the diencephalon and telencephalon. In animals killed within 2–3 min of disturbance, baseline 3β-HSD activity in portions of the telencephalon is higher in females than males. Acute restraint stress (10 min) decreases 3β-HSD activity in females but not in males, and in stressed animals, telencephalic 3β-HSD activity is greater in males than in females. Thus, the baseline sex difference is rapidly reversed by stress. To our knowledge, this is the first demonstration of 1) brain region differences in DHEA metabolism by 3β-HSD, 2) rapid modulation of 3β-HSD activity, and 3) sex differences in brain 3β-HSD and regulation by stress. Songbirds are good animal models for studying the regulation and functions of DHEA and neurosteroids in the nervous system.


2007 ◽  
Vol 19 (5) ◽  
pp. 855-865 ◽  
Author(s):  
Shirley-Ann Rüschemeyer ◽  
Marcel Brass ◽  
Angela D. Friederici

The interaction between language and action systems has become an increasingly interesting topic of discussion in cognitive neuroscience. Several recent studies have shown that processing of action verbs elicits activation in the cerebral motor system in a somatotopic manner. The current study extends these findings to show that the brain responses for processing of verbs with specific motor meanings differ not only from that of other motor verbs, but, crucially, that the comprehension of verbs with motor meanings (i.e., greifen, to grasp) differs fundamentally from the processing of verbs with abstract meanings (i.e., denken, to think). Second, the current study investigated the neural correlates of processing morphologically complex verbs with abstract meanings built on stems with motor versus abstract meanings (i.e., begreifen, to comprehend vs. bedenken, to consider). Although residual effects of motor stem meaning might have been expected, we see no evidence for this in our data. Processing of morphologically complex verbs built on motor stems showed no differences in involvement of the motor system when compared with processing complex verbs with abstract stems. Complex verbs built on motor stems did show increased activation compared with complex verbs built on abstract stems in the right posterior temporal cortex. This result is discussed in light of the involvement of the right temporal cortex in comprehension of metaphoric or figurative language.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5213
Author(s):  
Congying He ◽  
Rupesh Kumar Chikara ◽  
Chia-Lung Yeh ◽  
Li-Wei Ko

Embodied cognitive attention detection is important for many real-world applications, such as monitoring attention in daily driving and studying. Exploring how the brain and behavior are influenced by visual sensory inputs becomes a major challenge in the real world. The neural activity of embodied mind cognitive states can be understood through simple symbol experimental design. However, searching for a particular target in the real world is more complicated than during a simple symbol experiment in the laboratory setting. Hence, the development of realistic situations for investigating the neural dynamics of subjects during real-world environments is critical. This study designed a novel military-inspired target detection task for investigating the neural activities of performing embodied cognition tasks in the real-world setting. We adopted independent component analysis (ICA) and electroencephalogram (EEG) dipole source localization methods to study the participant’s event-related potentials (ERPs), event-related spectral perturbation (ERSP), and power spectral density (PSD) during the target detection task using a wireless EEG system, which is more convenient for real-life use. Behavioral results showed that the response time in the congruent condition (582 ms) was shorter than those in the incongruent (666 ms) and nontarget (863 ms) conditions. Regarding the EEG observation, we observed N200-P300 wave activation in the middle occipital lobe and P300-N500 wave activation in the right frontal lobe and left motor cortex, which are associated with attention ERPs. Furthermore, delta (1–4 Hz) and theta (4–7 Hz) band powers in the right frontal lobe, as well as alpha (8–12 Hz) and beta (13–30 Hz) band powers in the left motor cortex were suppressed, whereas the theta (4–7 Hz) band powers in the middle occipital lobe were increased considerably in the attention task. Experimental results showed that the embodied body function influences human mental states and psychological performance under cognition attention tasks. These neural markers will be also feasible to implement in the real-time brain computer interface. Novel findings in this study can be helpful for humans to further understand the interaction between the brain and behavior in multiple target detection conditions in real life.


1985 ◽  
Vol 30 (12) ◽  
pp. 999-999
Author(s):  
Gerald S. Wasserman

2009 ◽  
Vol 212 (15) ◽  
pp. 2411-2418 ◽  
Author(s):  
K. W. Sockman ◽  
K. G. Salvante ◽  
D. M. Racke ◽  
C. R. Campbell ◽  
B. A. Whitman

2016 ◽  
Vol 371 (1688) ◽  
pp. 20150106 ◽  
Author(s):  
Margaret M. McCarthy

Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.


2018 ◽  
Vol 133 ◽  
pp. 189-201 ◽  
Author(s):  
Laura Sánchez-Marín ◽  
David Ladrón de Guevara-Miranda ◽  
M. Carmen Mañas-Padilla ◽  
Francisco Alén ◽  
Román D. Moreno-Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document