Sensitive Periods in the Development of the Brain and Behavior

2004 ◽  
Vol 16 (8) ◽  
pp. 1412-1425 ◽  
Author(s):  
Eric I. Knudsen

Experience exerts a profound influence on the brain and, therefore, on behavior. When the effect of experience on the brain is particularly strong during a limited period in development, this period is referred to as a sensitive period. Such periods allow experience to instruct neural circuits to process or represent information in a way that is adaptive for the individual. When experience provides information that is essential for normal development and alters performance permanently, such sensitive periods are referred to as critical periods. Although sensitive periods are reflected in behavior, they are actually a property of neural circuits. Mechanisms of plasticity at the circuit level are discussed that have been shown to operate during sensitive periods. A hypothesis is proposed that experience during a sensitive period modifies the architecture of a circuit in fundamental ways, causing certain patterns of connectivity to become highly stable and, therefore, energetically preferred. Plasticity that occurs beyond the end of a sensitive period, which is substantial in many circuits, alters connectivity patterns within the architectural constraints established during the sensitive period. Preferences in a circuit that result from experience during sensitive periods are illustrated graphically as changes in a “stability landscape,” a metaphor that represents the relative contributions of genetic and experiential influences in shaping the information processing capabilities of a neural circuit. By understanding sensitive periods at the circuit level, as well as understanding the relationship between circuit properties and behavior, we gain a deeper insight into the critical role that experience plays in shaping the development of the brain and behavior.

1996 ◽  
Vol 19 (4) ◽  
pp. 582-582
Author(s):  
Steven E. Hyman

AbstractHeyman's target article is an analytical tour de force, but it makes too hard a distinction between voluntary and driven behavior. It is more fruitful to think about brain and behavior as shifting, interacting “agents,” represented by multiple neural circuits. This has the virtue of better connecting behavioral analysis with wet neuroscience.


2007 ◽  
Vol 97 (1) ◽  
pp. 806-816 ◽  
Author(s):  
Shane R. Crandall ◽  
Naoya Aoki ◽  
Teresa A. Nick

Humans and songbirds shape learned vocalizations during a sensorimotor sensitive period or “babbling” phase. The brain mechanisms that underlie the shaping of vocalizations by sensory feedback are not known. We examined song behavior and brain activity in zebra finches during singing as they actively shaped their song toward a tutor model. We now show that the temporal relationship of behavior and activity in the premotor area HVC changes with the development of song behavior. During sensorimotor learning, HVC bursting activity both preceded and followed learned vocalizations by hundreds of milliseconds. Correspondingly, the duration of bursts that occurred during ongoing song motif behavior was prolonged in juveniles, as compared with adults, and was inversely correlated with song maturation. Multielectrode single-unit recording in juveniles revealed that single fast-spiking neurons were active both before and after vocalization. These same neurons responded to auditory stimuli. Collectively, these data indicate that a key aspect of sensory critical periods—prolonged bursting—also applies to sensorimotor development. In addition, prolonged motor discharge and sensory input coincide in single neurons of the developing song system, providing the necessary cellular elements for sensorimotor shaping through activity-dependent mechanisms.


Coming of Age ◽  
2019 ◽  
pp. 69-95
Author(s):  
Cheryl L. Sisk ◽  
Russell D. Romeo

This chapter begins with some history of the field of behavioral neuroendocrinology and traces the origins of the classic organizational-activational hypothesis to explain sexual differentiation of the brain and behavior and hormonal influences on sex-typical social behaviors. The classic hypothesis posits that testicular hormones masculinize and defeminize neural circuits during a perinatal sensitive period, programming sex-typical activational responses to gonadal hormones in adulthood. Research since the mid- to late 1980s shows that a second wave of hormone-dependent organization of the brain and behavior occurs during puberty and adolescence and that ovarian hormones are actively involved in feminization of the brain during the adolescent period of organization. Next, a conceptual framework is presented for studying adolescent development of social cognition (the mental processes by which an individual encodes, interprets, and responds to sensory information from an animal of the same species) in the context of social reorientation, when during adolescence the source of social reward shifts from family to peers. The chapter reviews the literature on what social behaviors and aspects of social cognition are organized by pubertal hormones in males, as well as the nonsocial behaviors that are organized by pubertal hormones in males and females.


1985 ◽  
Vol 30 (12) ◽  
pp. 999-999
Author(s):  
Gerald S. Wasserman

2021 ◽  
Author(s):  
Qiushi Wang ◽  
Yuehua Xu ◽  
Tengda Zhao ◽  
Zhilei Xu ◽  
Yong He ◽  
...  

Abstract The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with the highest contributions to individual uniqueness were primarily located between different functional systems, and the short- (0–30 mm) and middle-range (30–60 mm) connectivities were more distinctive than the long-range (>60 mm) connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in cognition and behavior later in life.


2009 ◽  
Vol 212 (15) ◽  
pp. 2411-2418 ◽  
Author(s):  
K. W. Sockman ◽  
K. G. Salvante ◽  
D. M. Racke ◽  
C. R. Campbell ◽  
B. A. Whitman

2009 ◽  
Vol 106 (17) ◽  
pp. 7203-7208 ◽  
Author(s):  
Pei-Yu Wang ◽  
Anna Protheroe ◽  
Andrew N. Clarkson ◽  
Floriane Imhoff ◽  
Kyoko Koishi ◽  
...  

Many behavioral traits and most brain disorders are common to males and females but are more evident in one sex than the other. The control of these subtle sex-linked biases is largely unstudied and has been presumed to mirror that of the highly dimorphic reproductive nuclei. Sexual dimorphism in the reproductive tract is a product of Müllerian inhibiting substance (MIS), as well as the sex steroids. Males with a genetic deficiency in MIS signaling are sexually males, leading to the presumption that MIS is not a neural regulator. We challenge this presumption by reporting that most immature neurons in mice express the MIS-specific receptor (MISRII) and that male Mis−/− and Misrii−/− mice exhibit subtle feminization of their spinal motor neurons and of their exploratory behavior. Consequently, MIS may be a broad regulator of the subtle sex-linked biases in the nervous system.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2018 ◽  
Vol 133 ◽  
pp. 189-201 ◽  
Author(s):  
Laura Sánchez-Marín ◽  
David Ladrón de Guevara-Miranda ◽  
M. Carmen Mañas-Padilla ◽  
Francisco Alén ◽  
Román D. Moreno-Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document