Imprecise color constancy versus color realism

2003 ◽  
Vol 26 (1) ◽  
pp. 29-30 ◽  
Author(s):  
Brian V. Funt

AbstractByrne & Hilbert's thesis, that color be associated with reflectance-type, is questioned on the grounds that it is far from clear that the human visual system is able to determine a surface's reflectance-type with sufficient accuracy. In addition, a (friendly) suggestion is made as to how to amend the definition of reflectance-type in terms of CIE (Commission Internationale de l'Eclairage) coordinates under a canonical illuminant.

2020 ◽  
Vol 10 (12) ◽  
pp. 4395
Author(s):  
Jongsu Yoon ◽  
Yoonsik Choe

Retinex theory represents the human visual system by showing the relative reflectance of an object under various illumination conditions. A feature of this human visual system is color constancy, and the Retinex theory is designed in consideration of this feature. The Retinex algorithms have been popularly used to effectively decompose the illumination and reflectance of an object. The main aim of this paper is to study image enhancement using convolution sparse coding and sparse representations of the reflectance component in the Retinex model over a learned dictionary. To realize this, we use the convolutional sparse coding model to represent the reflectance component in detail. In addition, we propose that the reflectance component can be reconstructed using a trained general dictionary by using convolutional sparse coding from a large dataset. We use singular value decomposition in limited memory to construct a best reflectance dictionary. This allows the reflectance component to provide improved visual quality over conventional methods, as shown in the experimental results. Consequently, we can reduce the difference in perception between humans and machines through the proposed Retinex-based image enhancement.


2011 ◽  
Vol 20 (02) ◽  
pp. 321-342 ◽  
Author(s):  
MARK S. REA ◽  
MARIANA G. FIGUEIRO

It is well-known that the light/dark cycle incident on the retina regulates the timing of the human circadian system. Disruption of a regular, 24-hour pattern of light and dark can significantly affect our health and well-being. A wide range of modern maladies, from sleep disorders to cancer, have been linked to light-induced circadian disruption. Light has been defined, however, only in terms of the human visual system, not the circadian system. Thus, the study of light-induced circadian disruption is in need of a new definition of light (and dark). Here we contrast light as a stimulus for the human visual system with that for the human circadian system to elucidate the significance of developing a new definition of circadian light as it might ultimately be used to improve health and well-being.


2017 ◽  
Vol 19 (2) ◽  
pp. 104 ◽  
Author(s):  
Salvador Bará

The formal link between magnitudes per square arcsecond and luminance is discussed in this paper. Directly related to the human visual system, luminance is defined in terms of the spectral radiance of the source, weighted by the CIE V(l) luminous efficiency function, and scaled by the 683 lm/W luminous efficacy constant. In consequence, any exact and spectrum-independent relationship between luminance and magnitudes per square arcsecond requires that the last ones be measured precisely in the CIE V(l) band. The luminance value corresponding to mVC=0 (zero-point of the CIE V(l) magnitude scale) depends on the reference source chosen for the definition of the magnitude system. Using absolute AB magnitudes, the zero point luminance of the CIE V(l) photometric band is 10.96 x 104 cd·m-2.


2002 ◽  
Vol 69 (5) ◽  
pp. 327 ◽  
Author(s):  
N. N. Krasilnikov ◽  
O. I. Krasilnikova ◽  
Yu. E. Shelepin

2020 ◽  
Vol 2020 (1) ◽  
pp. 60-64
Author(s):  
Altynay Kadyrova ◽  
Majid Ansari-Asl ◽  
Eva Maria Valero Benito

Colour is one of the most important appearance attributes in a variety of fields including both science and industry. The focus of this work is on cosmetics field and specifically on the performance of the human visual system on the selection of foundation makeup colour that best matches with the human skin colour. In many cases, colour evaluations tend to be subjective and vary from person to person thereby producing challenging problems to quantify colour for objective evaluations and measurements. Although many researches have been done on colour quantification in last few decades, to the best of our knowledge, this is the first study to evaluate objectively a consumer's visual system in skin colour matching through a psychophysical experiment under different illuminations exploiting spectral measurements. In this paper, the experiment setup is discussed and the results from the experiment are presented. The correlation between observers' skin colour evaluations by using PANTONE Skin Tone Guide samples and spectroradiometer is assessed. Moreover, inter and intra observer variability are considered and commented. The results reveal differences between nine ethnic groups, between two genders, and between the measurements under two illuminants (i.e.D65 and F (fluorescent)). The results further show that skin colour assessment was done better under D65 than under F illuminant. The human visual system was three times worse than instrument in colour matching in terms of colour difference between skin and PANTONE Skin Tone Guide samples. The observers tend to choose lighter, less reddish, and consequently paler colours as the best match to their skin colour. These results have practical applications. They can be used to design, for example, an application for foundation colour selection based on correlation between colour measurements and human visual system based subjective evaluations.


Sign in / Sign up

Export Citation Format

Share Document