The secret is at the crossways: Hodotopic organization and nonlinear dynamics of brain neural networks

2013 ◽  
Vol 36 (6) ◽  
pp. 623-624 ◽  
Author(s):  
Tobias A. Mattei

AbstractBy integrating the classic psychological principles of ancient art of memory (AAOM) with the most recent paradigms in cognitive neuroscience (i.e., the concepts of hodotopic organization and nonlinear dynamics of brain neural networks), Llewellyn provides an up-to-date model of the complex psychological relationships between memory, imagination, and dreams in accordance with current state-of-the-art principles in neuroscience.

Author(s):  
Weixiang Xu ◽  
Xiangyu He ◽  
Tianli Zhao ◽  
Qinghao Hu ◽  
Peisong Wang ◽  
...  

Large neural networks are difficult to deploy on mobile devices because of intensive computation and storage. To alleviate it, we study ternarization, a balance between efficiency and accuracy that quantizes both weights and activations into ternary values. In previous ternarized neural networks, a hard threshold Δ is introduced to determine quantization intervals. Although the selection of Δ greatly affects the training results, previous works estimate Δ via an approximation or treat it as a hyper-parameter, which is suboptimal. In this paper, we present the Soft Threshold Ternary Networks (STTN), which enables the model to automatically determine quantization intervals instead of depending on a hard threshold. Concretely, we replace the original ternary kernel with the addition of two binary kernels at training time, where ternary values are determined by the combination of two corresponding binary values. At inference time, we add up the two binary kernels to obtain a single ternary kernel. Our method dramatically outperforms current state-of-the-arts, lowering the performance gap between full-precision networks and extreme low bit networks. Experiments on ImageNet with AlexNet (Top-1 55.6%), ResNet-18 (Top-1 66.2%) achieves new state-of-the-art.


2021 ◽  
Vol 7 ◽  
pp. e495
Author(s):  
Saleh Albahli ◽  
Hafiz Tayyab Rauf ◽  
Abdulelah Algosaibi ◽  
Valentina Emilia Balas

Artificial intelligence (AI) has played a significant role in image analysis and feature extraction, applied to detect and diagnose a wide range of chest-related diseases. Although several researchers have used current state-of-the-art approaches and have produced impressive chest-related clinical outcomes, specific techniques may not contribute many advantages if one type of disease is detected without the rest being identified. Those who tried to identify multiple chest-related diseases were ineffective due to insufficient data and the available data not being balanced. This research provides a significant contribution to the healthcare industry and the research community by proposing a synthetic data augmentation in three deep Convolutional Neural Networks (CNNs) architectures for the detection of 14 chest-related diseases. The employed models are DenseNet121, InceptionResNetV2, and ResNet152V2; after training and validation, an average ROC-AUC score of 0.80 was obtained competitive as compared to the previous models that were trained for multi-class classification to detect anomalies in x-ray images. This research illustrates how the proposed model practices state-of-the-art deep neural networks to classify 14 chest-related diseases with better accuracy.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Hylke E. Beck ◽  
Seth Westra ◽  
Jackson Tan ◽  
Florian Pappenberger ◽  
George J. Huffman ◽  
...  

Abstract We introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of global high-resolution (0.1°) observation-based climatologies (1979–2018) of the occurrence and peak intensity of precipitation (P) at daily and 3-hourly time-scales. The climatologies were produced using neural networks trained with daily P observations from 93,138 gauges and hourly P observations (resampled to 3-hourly) from 11,881 gauges worldwide. Mean validation coefficient of determination (R2) values ranged from 0.76 to 0.80 for the daily P occurrence indices, and from 0.44 to 0.84 for the daily peak P intensity indices. The neural networks performed significantly better than current state-of-the-art reanalysis (ERA5) and satellite (IMERG) products for all P indices. Using a 0.1 mm 3 h−1 threshold, P was estimated to occur 12.2%, 7.4%, and 14.3% of the time, on average, over the global, land, and ocean domains, respectively. The highest P intensities were found over parts of Central America, India, and Southeast Asia, along the western equatorial coast of Africa, and in the intertropical convergence zone. The PPDIST dataset is available via www.gloh2o.org/ppdist.


Author(s):  
Alex Dexter ◽  
Spencer A. Thomas ◽  
Rory T. Steven ◽  
Kenneth N. Robinson ◽  
Adam J. Taylor ◽  
...  

AbstractHigh dimensionality omics and hyperspectral imaging datasets present difficult challenges for feature extraction and data mining due to huge numbers of features that cannot be simultaneously examined. The sample numbers and variables of these methods are constantly growing as new technologies are developed, and computational analysis needs to evolve to keep up with growing demand. Current state of the art algorithms can handle some routine datasets but struggle when datasets grow above a certain size. We present a training deep learning via neural networks on non-linear dimensionality reduction, in particular t-distributed stochastic neighbour embedding (t-SNE), to overcome prior limitations of these methods.One Sentence SummaryAnalysis of prohibitively large datasets by combining deep learning via neural networks with non-linear dimensionality reduction.


2022 ◽  
Author(s):  
Hariharan Nagasubramaniam ◽  
Rabih Younes

Bokeh effect is growing to be an important feature in photography, essentially to choose an object of interest to be in focus with the rest of the background being blurred. While naturally rendering this effect requires a DSLR with large diameter of aperture, with the current advancements in Deep Learning, this effect can also be produced in mobile cameras. Most of the existing methods use Convolutional Neural Networks while some relying on the depth map to render this effect. In this paper, we propose an end-to-end Vision Transformer model for Bokeh rendering of images from monocular camera. This architecture uses vision transformers as backbone, thus learning from the entire image rather than just the parts from the filters in a CNN. This property of retaining global information coupled with initial training of the model for image restoration before training to render the blur effect for the background, allows our method to produce clearer images and outperform the current state-of-the-art models on the EBB! Data set. The code to our proposed method can be found at: https://github.com/Soester10/ Bokeh-Rendering-with-Vision-Transformers.


2021 ◽  
Vol 15 (02) ◽  
pp. 161-187
Author(s):  
Olav A. Nergård Rongved ◽  
Steven A. Hicks ◽  
Vajira Thambawita ◽  
Håkon K. Stensland ◽  
Evi Zouganeli ◽  
...  

Developing systems for the automatic detection of events in video is a task which has gained attention in many areas including sports. More specifically, event detection for soccer videos has been studied widely in the literature. However, there are still a number of shortcomings in the state-of-the-art such as high latency, making it challenging to operate at the live edge. In this paper, we present an algorithm to detect events in soccer videos in real time, using 3D convolutional neural networks. We test our algorithm on three different datasets from SoccerNet, the Swedish Allsvenskan, and the Norwegian Eliteserien. Overall, the results show that we can detect events with high recall, low latency, and accurate time estimation. The trade-off is a slightly lower precision compared to the current state-of-the-art, which has higher latency and performs better when a less accurate time estimation can be accepted. In addition to the presented algorithm, we perform an extensive ablation study on how the different parts of the training pipeline affect the final results.


Author(s):  
Yasaman Razeghi ◽  
Kalev Kask ◽  
Yadong Lu ◽  
Pierre Baldi ◽  
Sakshi Agarwal ◽  
...  

Bucket Elimination (BE) is a universal inference scheme that can solve most tasks over probabilistic and deterministic graphical models exactly. However, it often requires exponentially high levels of memory (in the induced-width) preventing its execution. In the spirit of exploiting Deep Learning for inference tasks, in this paper, we will use neural networks to approximate BE. The resulting Deep Bucket Elimination (DBE) algorithm is developed for computing the partition function. We provide a proof-of-concept empirically using instances from several different benchmarks, showing that DBE can be a more accurate approximation than current state-of-the-art approaches for approximating BE (e.g. the mini-bucket schemes), especially when problems are sufficiently hard.


2020 ◽  
Vol 34 (07) ◽  
pp. 12192-12199 ◽  
Author(s):  
Peisong Wang ◽  
Xiangyu He ◽  
Gang Li ◽  
Tianli Zhao ◽  
Jian Cheng

Binarization of feature representation is critical for Binarized Neural Networks (BNNs). Currently, sign function is the commonly used method for feature binarization. Although it works well on small datasets, the performance on ImageNet remains unsatisfied. Previous methods mainly focus on minimizing quantization error, improving the training strategies and decomposing each convolution layer into several binary convolution modules. However, whether sign is the only option for binarization has been largely overlooked. In this work, we propose the Sparsity-inducing Binarized Neural Network (Si-BNN), to quantize the activations to be either 0 or +1, which introduces sparsity into binary representation. We further introduce trainable thresholds into the backward function of binarization to guide the gradient propagation. Our method dramatically outperforms current state-of-the-arts, lowering the performance gap between full-precision networks and BNNs on mainstream architectures, achieving the new state-of-the-art on binarized AlexNet (Top-1 50.5%), ResNet-18 (Top-1 59.7%), and VGG-Net (Top-1 63.2%). At inference time, Si-BNN still enjoys the high efficiency of exclusive-not-or (xnor) operations.


2020 ◽  
Vol 1 (6) ◽  
Author(s):  
Pablo Barros ◽  
Nikhil Churamani ◽  
Alessandra Sciutti

AbstractCurrent state-of-the-art models for automatic facial expression recognition (FER) are based on very deep neural networks that are effective but rather expensive to train. Given the dynamic conditions of FER, this characteristic hinders such models of been used as a general affect recognition. In this paper, we address this problem by formalizing the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks. We introduce an inhibitory layer that helps to shape the learning of facial features in the last layer of the network and, thus, improving performance while reducing the number of trainable parameters. To evaluate our model, we perform a series of experiments on different benchmark datasets and demonstrate how the FaceChannel achieves a comparable, if not better, performance to the current state-of-the-art in FER. Our experiments include cross-dataset analysis, to estimate how our model behaves on different affective recognition conditions. We conclude our paper with an analysis of how FaceChannel learns and adapts the learned facial features towards the different datasets.


Sign in / Sign up

Export Citation Format

Share Document