Brain networks for emotion and cognition: Implications and tools for understanding mental disorders and pathophysiology

2019 ◽  
Vol 42 ◽  
Author(s):  
Luiz Pessoa

AbstractUnderstanding how structure maps to function in the brain in terms of large-scale networks is critical to elucidating the brain basis of mental phenomena and mental disorders. Given that this mapping is many-to-many, I argue that researchers need to shift to a multivariate brain and behavior characterization to fully unravel the contributions of brain processes to typical and atypical function.

2021 ◽  
Author(s):  
Ayelet Rosenberg ◽  
Manish Saggar ◽  
Peter Rogu ◽  
Aaron W. Limoges ◽  
Carmen Sandi ◽  
...  

AbstractThe brain and behavior are under energetic constraints, which are likely driven by mitochondrial energy production capacity. However, the mitochondria-behavior relationship has not been systematically studied on a brain-wide scale. Here we examine the association between mitochondrial health index and stress-related behaviors in mice with diverse mitochondrial and behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain function and mitochondrial DNA (mtDNA) content were deployed on 571 samples from 17 brain regions. We find specific patterns of mito-behavior associations that vary across brain regions and behaviors. Furthermore, multi-slice network analysis applied to our brain-wide mitochondrial dataset identified three large-scale networks of brain regions. A major network composed of cortico-striatal regions exhibits highest mitochondria-behavior correlations, suggesting that this mito-based network is functionally significant. Mito-based networks can also be recapitulated using correlated gene expression and structural connectome data, thereby providing convergent multimodal evidence of mitochondrial functional organization anchored in gene, brain and behavior.


2018 ◽  
Author(s):  
VIktor Jirsa ◽  
Anthony Randal McIntosh ◽  
Raoul Huys

Over the last few decades, neuroscience, and various associated disciples, has expanded enormously in terms of output, tools, methods, concepts and large-scale projects. In spite of these developments, the principles underlying brain function and behavior are of yet only partially understood. We claim that brain functioning requires the elucidation of the rules associated with all possible task realizations, rather than targeting the activity underlying a specific realization. A first step into that direction was taken by approaches focusing on dynamical structures underlying task performances, as exemplified by Coordination Dynamics. Theoretically, this approach is founded on Haken’s Synergetics, which provides a mechanism through which the degrees of freedom associated with high-dimensional systems may be effectively reduced to one or a few functional ones. This dimensionality reduction, however, is only valid in the vicinity of phase transitions, which severely limits the framework’s domain of explanation. This limitation does not hold for the recently advanced framework of Structured Flows on Manifolds (SFM), which is similar in spirit yet complementary to Synergetics. Following novel theoretical work on the onset, propagation, and offset of epileptic seizures, we expand the SFM framework, and propose that the resulting two-tiered fast-slow dynamics may be a generic mathematical organization underlying and linking brain and behavior.


1985 ◽  
Vol 30 (12) ◽  
pp. 999-999
Author(s):  
Gerald S. Wasserman

2009 ◽  
Vol 212 (15) ◽  
pp. 2411-2418 ◽  
Author(s):  
K. W. Sockman ◽  
K. G. Salvante ◽  
D. M. Racke ◽  
C. R. Campbell ◽  
B. A. Whitman

2009 ◽  
Vol 106 (17) ◽  
pp. 7203-7208 ◽  
Author(s):  
Pei-Yu Wang ◽  
Anna Protheroe ◽  
Andrew N. Clarkson ◽  
Floriane Imhoff ◽  
Kyoko Koishi ◽  
...  

Many behavioral traits and most brain disorders are common to males and females but are more evident in one sex than the other. The control of these subtle sex-linked biases is largely unstudied and has been presumed to mirror that of the highly dimorphic reproductive nuclei. Sexual dimorphism in the reproductive tract is a product of Müllerian inhibiting substance (MIS), as well as the sex steroids. Males with a genetic deficiency in MIS signaling are sexually males, leading to the presumption that MIS is not a neural regulator. We challenge this presumption by reporting that most immature neurons in mice express the MIS-specific receptor (MISRII) and that male Mis−/− and Misrii−/− mice exhibit subtle feminization of their spinal motor neurons and of their exploratory behavior. Consequently, MIS may be a broad regulator of the subtle sex-linked biases in the nervous system.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2018 ◽  
Vol 133 ◽  
pp. 189-201 ◽  
Author(s):  
Laura Sánchez-Marín ◽  
David Ladrón de Guevara-Miranda ◽  
M. Carmen Mañas-Padilla ◽  
Francisco Alén ◽  
Román D. Moreno-Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document