The frame/content theory of evolution of speech production

1998 ◽  
Vol 21 (4) ◽  
pp. 499-511 ◽  
Author(s):  
Peter F. MacNeilage

The species-specific organizational property of speech is a continual mouth open-close alternation, the two phases of which are subject to continual articulatory modulation. The cycle constitutes the syllable, and the open and closed phases are segments – vowels and consonants, respectively. The fact that segmental serial ordering errors in normal adults obey syllable structure constraints suggests that syllabic “frames” and segmental “content” elements are separately controlled in the speech production process. The frames may derive from cycles of mandibular oscillation present in humans from babbling onset, which are responsible for the open-close alternation. These communication- related frames perhaps first evolved when the ingestion-related cyclicities of mandibular oscillation (associated with mastication [chewing] sucking and licking) took on communicative significance as lipsmacks, tonguesmacks, and teeth chatters – displays that are prominent in many nonhuman primates. The new role of Broca's area and its surround in human vocal communication may have derived from its evolutionary history as the main cortical center for the control of ingestive processes. The frame and content components of speech may have subsequently evolved separate realizations within two general purpose primate motor control systems: (1) a motivation-related medial “intrinsic” system, including anterior cingulate cortex and the supplementary motor area, for self-generated behavior, formerly responsible for ancestral vocalization control and now also responsible for frames, and (2) a lateral “extrinsic” system, including Broca's area and surround, and Wernicke's area, specialized for response to external input (and therefore the emergent vocal learning capacity) and more responsible for content.

2009 ◽  
Vol 19 (9) ◽  
pp. 2156-2165 ◽  
Author(s):  
Marina Papoutsi ◽  
Jacco A. de Zwart ◽  
J. Martijn Jansma ◽  
Martin J. Pickering ◽  
James A. Bednar ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingnan Du ◽  
Lena Palaniyappan ◽  
Zhaowen Liu ◽  
Wei Cheng ◽  
Weikang Gong ◽  
...  

AbstractSchizophrenia is a neurocognitive illness of synaptic and brain network-level dysconnectivity that often reaches a persistent chronic stage in many patients. Subtle language deficits are a core feature even in the early stages of schizophrenia. However, the primacy of language network dysconnectivity and language-related genetic variants in the observed phenotype in early stages of illness remains unclear. This study used two independent schizophrenia dataset consisting of 138 and 53 drug-naïve first-episode schizophrenia (FES) patients, and 112 and 56 healthy controls, respectively. A brain-wide voxel-level functional connectivity analysis was conducted to investigate functional dysconnectivity and its relationship with illness duration. We also explored the association between critical language-related genetic (such as FOXP2) mutations and the altered functional connectivity in patients. We found elevated functional connectivity involving Broca’s area, thalamus and temporal cortex that were replicated in two FES datasets. In particular, Broca’s area - anterior cingulate cortex dysconnectivity was more pronounced for patients with shorter illness duration, while thalamic dysconnectivity was predominant in those with longer illness duration. Polygenic risk scores obtained from FOXP2-related genes were strongly associated with functional dysconnectivity identified in patients with shorter illness duration. Our results highlight the criticality of language network dysconnectivity, involving the Broca’s area in early stages of schizophrenia, and the role of language-related genes in this aberration, providing both imaging and genetic evidence for the association between schizophrenia and the determinants of language.


Author(s):  
Diego L Lorca-Puls ◽  
Andrea Gajardo-Vidal ◽  
Ploras Team ◽  
Marion Oberhuber ◽  
Susan Prejawa ◽  
...  

Abstract By combining functional neuroimaging and a wide range of tasks that place varying demands on speech production, Lorca-Puls et al. reveal that right cerebellar Crus I and right pars opercularis are likely to play a particularly important role in supporting successful speech production following damage to Broca’s area. Broca’s area in the posterior half of the left inferior frontal gyrus has traditionally been considered an important node in the speech production network. Nevertheless, recovery of speech production has been reported, to different degrees, within a few months of damage to Broca’s area. Importantly, contemporary evidence suggests that, within Broca’s area, its posterior part (i.e. pars opercularis) plays a more prominent role in speech production than its anterior part (i.e. pars triangularis). In the current study, we therefore investigated the brain activation patterns that underlie accurate speech production following stroke damage to the opercular part of Broca’s area. By combining functional MRI and 13 tasks that place varying demands on speech production, brain activation was compared in (i) seven patients of interest with damage to the opercular part of Broca’s area, (ii) 55 neurologically-intact controls and (iii) 28 patient controls with left-hemisphere damage that spared Broca’s area. When producing accurate overt speech responses, the patients with damage to the left pars opercularis activated a substantial portion of the normal bilaterally distributed system. Within this system, there was a lesion-site-dependent effect in a specific part of the right cerebellar Crus I where activation was significantly higher in the patients with damage to the left pars opercularis compared to both neurologically-intact and patient controls. In addition, activation in the right pars opercularis was significantly higher in the patients with damage to the left pars opercularis relative to neurologically-intact controls but not patient controls (after adjusting for differences in lesion size). By further examining how right Crus I and right pars opercularis responded across a range of conditions in the neurologically-intact controls, we suggest that these regions play distinct roles in domain-general cognitive control. Finally, we show that enhanced activation in the right pars opercularis cannot be explained by release from an inhibitory relationship with the left pars opercularis (i.e. dis-inhibition) because right pars opercularis activation was positively related to left pars opercularis activation in neurologically-intact controls. Our findings motivate and guide future studies to investigate (a) how exactly right Crus I and right pars opercularis support accurate speech production after damage to the opercular part of Broca’s area and (b) whether non-invasive neurostimulation to one or both of these regions boosts speech production recovery after damage to the opercular part of Broca’s area.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
M Musso ◽  
A Schneider ◽  
C Büchel ◽  
C Weiller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document