Homeomorphic restrictions of smooth endomorphisms of an interval

1992 ◽  
Vol 12 (3) ◽  
pp. 429-439 ◽  
Author(s):  
Karen M. Brucks ◽  
Maria Victoria Otero-Espinar ◽  
Charles Tresser

AbstractWe describe the asymptotic dynamics of homeomorphisms obtained as restrictions of generic C2 endomorphisms of an interval with finitely many critical points, all of which are non-flat, and with all periodic points hyperbolic. The ω -limit set of such a restricted endomorphism cannot be infinite, except when the restriction of the endomorphism to the closure of the orbit of some critical point is a minimal homeomorphism of an infinite set.

Author(s):  
Amin Salehi

Scalar–tensor theories of gravity can be formulated in the Einstein frame or in the Jordan frame (JF) which are related with each other by conformal transformations. Although the two frames describe the same physics and are equivalent, the stability of the field equations in the two frames is not the same. Here, we implement dynamical system and phase space approach as a robustness tool to investigate this issue. We concentrate on the Brans–Dicke theory in a Friedmann–Lemaitre–Robertson–Walker universe, but the results can easily be generalized. Our analysis shows that while there is a one-to-one correspondence between critical points in two frames and each critical point in one frame is mapped to its corresponds in another frame, however, stability of a critical point in one frame does not guarantee the stability in another frame. Hence, an unstable point in one frame may be mapped to a stable point in another frame. All trajectories between two critical points in phase space in one frame are different from their corresponding in other ones. This indicates that the dynamical behavior of variables and cosmological parameters is different in two frames. Hence, for those features of the study, which focus on observational measurements, we must use the JF where experimental data have their usual interpretation.


Author(s):  
Jorge Rodríguez Contreras ◽  
Alberto Reyes Linero ◽  
Juliana Vargas Sánchez

The goal of this article is to conduct a global dynamics study of a linear multiparameter system (real parameters (a,b,c) in R^3); for this, we take the different changes that these parameters present. First, we find the different parametric surfaces in which the space is divided, where the stability of the critical point is defined; we then create a bifurcation diagram to classify the different bifurcations that appear in the system. Finally, we determine and classify the critical points at infinity, considering the canonical shape of the Poincaré sphere, and thus, obtain a global phase portrait of the multiparametric linear system.


2018 ◽  
Vol 74 (3) ◽  
pp. 170-183 ◽  
Author(s):  
Bertrand Fournier ◽  
Benoît Guillot ◽  
Claude Lecomte ◽  
Eduardo C. Escudero-Adán ◽  
Christian Jelsch

Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with theMoProsoftware. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This `SSD methodology' procedure can be applied to estimate uncertainties ofanyproperty related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely availableMoProprogram dedicated to charge-density refinement and modelling.


1880 ◽  
Vol 30 (200-205) ◽  
pp. 323-329 ◽  

In a paper read before the Chemical Society, in May, 1879, I gave an account of a method of determining what is termed by Kopp the “specific volumes” of liquids; that was shown to be the volume of liquid at its boiling-point, at ordinary atmospheric pressure, obtainable from 22,326 volumes of its gas, supposed to exist at 0°. Being desirous of extending these researches, with the view of ascertaining such relations at higher temperatures, since April, 1879, I have made numerous experiments, the results of, and deductions from which I hope to publish before long. The temperatures observed vary from the boiling-points of the liquids examined, to about 50° above their critical points; and in course of these experiments I have noticed some curious facts, which may not be unworthy of the attention of the Society. It is well known that at temperatures above that which produces what is termed by Dr. Andrews the “critical point” of a liquid, the substance is supposed to exist in a peculiar condition, and Dr Andrews purposely abstained from speculating on the nature of the matter, whether it be liquid or gaseous, or in an intermediate condition, to which no name has been given. As my observations bear directly on this point, it may be advisable first to describe the experiments I have made, and then to draw the deductions which appear to follow from them.


2011 ◽  
Vol 21 (11) ◽  
pp. 3205-3215 ◽  
Author(s):  
ISSAM NAGHMOUCHI

We show that, for monotone graph map f, all the ω-limit sets are finite whenever f has periodic point and for monotone dendrite map, any infinite ω-limit set does not contain periodic points. As a consequence, monotone graph and dendrite maps have no Li–Yorke pairs. However, we built a homeomorphism on a dendroid with a scrambled set having nonempty interior.


1999 ◽  
Vol 59 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Tao Li ◽  
Xiangdong Ye

We generalise a result of Hosaka and Kato by proving that if the set of periodic points of a continuous map of a tree is closed then each chain recurrent point is a periodic one. We also show that the topological entropy of a tree map is zero if and only if thew-limit set of each chain recurrent point (which is not periodic) contains no periodic points.


1997 ◽  
Vol 17 (6) ◽  
pp. 1267-1287 ◽  
Author(s):  
HENK BRUIN ◽  
GERHARD KELLER ◽  
MATTHIAS ST. PIERRE

We investigate the dynamics of unimodal maps $f$ of the interval restricted to the omega limit set $X$ of the critical point for cases where $X$ is a Cantor set. In particular, many cases where $X$ is a measure attractor of $f$ are included. We give two classes of examples of such maps, both generalizing unimodal Fibonacci maps [LM, BKNS]. In all cases $f_{|X}$ is a continuous factor of a generalized odometer (an adding machine-like dynamical system), and at the same time $f_{|X}$ factors onto an irrational circle rotation. In some of the examples we obtain irrational rotations on more complicated groups as factors.


1977 ◽  
Vol 16 (3) ◽  
pp. 325-339 ◽  
Author(s):  
B.D. Craven

For a constrained minimization problem with cone constraints, lagrangean necessary conditions for a minimum are well known, but are subject to certain hypotheses concerning cones. These hypotheses are now substantially weakened, but a counter example shows that they cannot be omitted altogether. The theorem extends to minimization in a partially ordered vector space, and to a weaker kind of critical point (a quasimin) than a local minimum. Such critical points are related to Kuhn-Tucker conditions, assuming a constraint qualification; in certain circumstances, relevant to optimal control, such a critical point must be a minimum. Using these generalized critical points, a theorem analogous to duality is proved, but neither assuming convexity, nor implying weak duality.


2000 ◽  
Vol 20 (5) ◽  
pp. 1391-1403 ◽  
Author(s):  
JAN KIWI

It is shown that a polynomial with a Cremer periodic orbit has a non-accessible critical point in its Julia set provided that the Cremer periodic orbit is approximated by small cycles. Also, this paper contains a new proof of the Douady–Shishikura inequality for the number of non-repelling cycles of a complex polynomial.


Sign in / Sign up

Export Citation Format

Share Document