scholarly journals Pattern equivariant functions, deformations and equivalence of tiling spaces

2008 ◽  
Vol 28 (4) ◽  
pp. 1153-1176 ◽  
Author(s):  
JOHANNES KELLENDONK

AbstractWe re-investigate the theory of deformations of tilings using P-equivariant cohomology. In particular, we relate the notion of asymptotically negligible shape functions introduced by Clark and Sadun to weakly P-equivariant forms. We then investigate more closely the relation between deformations of patterns and homeomorphism or topological conjugacy of pattern spaces.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3827
Author(s):  
Marek Klimczak ◽  
Witold Cecot

In this paper, we present a new approach to model the steady-state heat transfer in heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is based on the natural parallelization of the main computations and their further simplifications due to the numerical nature of the problem. The approach does not require the distinct separation of scales, which makes its applicability to the numerical modeling of the composites very broad. Our novelty relies on modifications to the standard higher-order shape functions, which are then applied to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special shape function assessment) has not been previously used for an approximation order higher than p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some numerical results are presented and compared with the standard direct finite-element solutions. The first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is subject to heating. The second test is the challenging problem of metal foam analysis. The thermal conductivity of air and aluminum differ by several orders of magnitude, which is typically very difficult for the upscaling methods. A very good agreement between our upscaled and reference results was observed, together with a significant reduction in the number of degrees of freedom. The error analysis and the p-convergence of the method are also presented. The latter is studied in terms of both the number of degrees of freedom and the computational time.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


2011 ◽  
Vol 08 (04) ◽  
pp. 705-730 ◽  
Author(s):  
G. Y. ZHANG ◽  
G. R. LIU

This paper presents two novel and effective cell-based smoothed point interpolation methods (CS-PIM) using isoparametric PIM (PIM-Iso) shape functions and condensed radial PIM (RPIM-Cd) shape functions respectively. These two types of PIM shape functions can successfully overcome the singularity problem occurred in the process of creating PIM shape functions and make the constructed CS-PIM models work well with the three-node triangular meshes. Smoothed strains are obtained by performing the generalized gradient smoothing operation over each triangular background cells, because the nodal PIM shape functions can be discontinuous. The generalized smoothed Galerkin (GS-Galerkin) weakform is used to create the discretized system equations. Some numerical examples are studied to examine various properties of the present methods in terms of accuracy, convergence, and computational efficiency.


Author(s):  
Giuseppe Catania ◽  
Silvio Sorrentino

In the Rayleigh-Ritz condensation method the solution of the equation of motion is approximated by a linear combination of shape-functions selected among appropriate sets. Extensive literature dealing with the choice of appropriate basis of shape functions exists, the selection depending on the particular boundary conditions of the structure considered. This paper is aimed at investigating the possibility of adopting a set of eigenfunctions evaluated from a simple stucture as a general basis for the analysis of arbitrary-shaped plates. The results are compared to those available in the literature and using standard finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document