Sharp ergodic theorems for group actions and strong ergodicity

1999 ◽  
Vol 19 (4) ◽  
pp. 1037-1061 ◽  
Author(s):  
ALEX FURMAN ◽  
YEHUDA SHALOM

Let $\mu$ be a probability measure on a locally compact group $G$, and suppose $G$ acts measurably on a probability measure space $(X,m)$, preserving the measure $m$. We study ergodic theoretic properties of the action along $\mu$-i.i.d. random walks on $G$. It is shown that under a (necessary) spectral assumption on the $\mu$-averaging operator on $L^2(X,m)$, almost surely the mean and the pointwise (Kakutani's) random ergodic theorems have roughly $n^{-1/2}$ rate of convergence. We also prove a central limit theorem for the pointwise convergence. Under a similar spectral condition on the diagonal $G$-action on $(X\times X,m\times m)$, an almost surely exponential rate of mixing along random walks is obtained.The imposed spectral condition is shown to be connected to a strengthening of the ergodicity property, namely, the uniqueness of $m$-integration as a $G$-invariant mean on $L^\infty(X,m)$. These related conditions, as well as the presented sharp ergodic theorems, never occur for amenable $G$. Nevertheless, we provide many natural examples, among them automorphism actions on tori and actions on Lie groups' homogeneous spaces, for which our results can be applied.

2020 ◽  
pp. 1-35
Author(s):  
ROLAND PROHASKA

Abstract A measure on a locally compact group is said to be spread out if one of its convolution powers is not singular with respect to Haar measure. Using Markov chain theory, we conduct a detailed analysis of random walks on homogeneous spaces with spread out increment distribution. For finite volume spaces, we arrive at a complete picture of the asymptotics of the n-step distributions: they equidistribute towards Haar measure, often exponentially fast and locally uniformly in the starting position. In addition, many classical limit theorems are shown to hold. In the infinite volume case, we prove recurrence and a ratio limit theorem for symmetric spread out random walks on homogeneous spaces of at most quadratic growth. This settles one direction in a long-standing conjecture.


2016 ◽  
Vol 48 (3) ◽  
pp. 744-767
Author(s):  
Clifford Hurvich ◽  
Josh Reed

AbstractWe study random walks whose increments are α-stable distributions with shape parameter 1<α<2. Specifically, assuming a mean increment size which is negative, we provide series expansions in terms of the mean increment size for the probability that the all-time maximum of an α-stable random walk is equal to 0 and, in the totally skewed-to-the-left case of skewness parameter β=-1, for the expected value of the all-time maximum of an α-stable random walk. Our series expansions generalize previous results for Gaussian random walks. Key ingredients in our proofs are Spitzer's identity for random walks, the stability property of α-stable random variables, and Zolotarev's integral representation for the cumulative distribution function of an α-stable random variable. We also discuss an application of our results to a problem arising in queueing theory.


1967 ◽  
Vol 19 ◽  
pp. 749-756
Author(s):  
D. Sankoff ◽  
D. A. Dawson

Given a probability measure space (Ω,,P)consider the followingpacking problem.What is the maximum number,b(K,Λ), of sets which may be chosen fromso that each set has measureKand no two sets have intersection of measure larger than Λ <K?In this paper the packing problem is solved for any non-atomic probability measure space. Rather than obtaining the solution explicitly, however, it is convenient to solve the followingminimal paving problem.In a non-atomic a-finite measure space (Ω,,μ)what is the measure,V(b, K,Λ), of the smallest set which is the union of exactlybsubsets of measureKsuch that no subsets have intersection of measure larger than Λ?


1994 ◽  
Vol 46 (06) ◽  
pp. 1263-1274 ◽  
Author(s):  
Wojciech Jaworski

Abstract Let G be a connected amenable locally compact group with left Haar measure λ. In an earlier work Jenkins claimed that exponential boundedness of G is equivalent to each of the following conditions: (a) every open subsemigroup S ⊆ G is amenable; (b) given and a compact K ⊆ G with nonempty interior there exists an integer n such that (c) given a signed measure of compact support and nonnegative nonzero f ∈ L ∞(G), the condition v * f ≥ 0 implies v(G) ≥ 0. However, Jenkins‚ proof of this equivalence is not complete. We give a complete proof. The crucial part of the argument relies on the following two results: (1) an open σ-compact subsemigroup S ⊆ G is amenable if and only if there exists an absolutely continuous probability measure μ on S such that lim for every s ∈ S; (2) G is exponentially bounded if and only if for every nonempty open subset U ⊆ G.


1994 ◽  
Vol 46 (4) ◽  
pp. 808-817
Author(s):  
Tianxuan Miao

AbstractLet with . If G is a nondiscrete locally compact group which is amenable as a discrete group and m ∈ LIM(CB(G)), then we can embed into the set of all extensions of m to left invariant means on L∞(G) which are mutually singular to every element of TLIM(L∞(G)), where LIM(S) and TLIM(S) are the sets of left invariant means and topologically left invariant means on S with S = CB(G) or L∞(G). It follows that the cardinalities of LIM(L∞(G)) ̴ TLIM(L∞(G)) and LIM(L∞(G)) are equal. Note that which contains is a very big set. We also embed into the set of all left invariant means on CB(G) which are mutually singular to every element of TLIM(CB(G)) for G = G1 ⨯ G2, where G1 is nondiscrete, non–compact, σ–compact and amenable as a discrete group and G2 is any amenable locally compact group. The extension of any left invariant mean on UCB(G) to CB(G) is discussed. We also provide an answer to a problem raised by Rosenblatt.


1968 ◽  
Vol 32 ◽  
pp. 141-153 ◽  
Author(s):  
Masasi Kowada

It is an important problem to determine the spectral type of automorphisms or flows on a probability measure space. We shall deal with a unitary operator U and a 1-parameter group of unitary operators {Ut} on a separable Hilbert space H, and discuss their spectral types, although U and {Ut} are not necessarily supposed to be derived from an automorphism or a flow respectively.


2015 ◽  
Vol 29 (28) ◽  
pp. 1550200
Author(s):  
Shuai Wang ◽  
Weigang Sun ◽  
Song Zheng

In this paper, we study random walks in a family of delayed tree-like networks controlled by two network parameters, where an immobile trap is located at the initial node. The novel feature of this family of networks is that the existing nodes have a time delay to give birth to new nodes. By the self-similar network structure, we obtain exact solutions of three types of first passage time (FPT) measuring the efficiency of random walks, which includes the mean receiving time (MRT), mean sending time (MST) and mean first passage time (MFPT). The obtained results show that the MRT, MST and MFPT increase with the network parameters. We further show that the values of MRT, MST and MFPT are much shorter than the nondelayed counterpart, implying that the efficiency of random walks in delayed trees is much higher.


2019 ◽  
Vol 33 (26) ◽  
pp. 1950306
Author(s):  
Qin Liu ◽  
Weigang Sun ◽  
Suyu Liu

The first-return time (FRT) is an effective measurement of random walks. Presently, it has attracted considerable attention with a focus on its scalings with regard to network size. In this paper, we propose a family of generalized and weighted transfractal networks and obtain the scalings of the FRT for a prescribed initial hub node. By employing the self-similarity of our networks, we calculate the first and second moments of FRT by the probability generating function and obtain the scalings of the mean and variance of FRT with regard to network size. For a large network, the mean FRT scales with the network size at the sublinear rate. Further, the efficiency of random walks relates strongly with the weight factor. The smaller the weight, the better the efficiency bears. Finally, we show that the variance of FRT decreases with more number of initial nodes, implying that our method is more effective for large-scale network size and the estimation of the mean FRT is more reliable.


Author(s):  
F. J. Yeadon

In (7) we proved maximal and pointwise ergodic theorems for transformations a of a von Neumann algebra which are linear positive and norm-reducing for both the operator norm ‖ ‖∞ and the integral norm ‖ ‖1 associated with a normal trace ρ on . Here we introduce a class of Banach spaces of unbounded operators, including the Lp spaces defined in (6), in which the transformations α reduce the norm, and in which the mean ergodic theorem holds; that is the averagesconverge in norm.


Sign in / Sign up

Export Citation Format

Share Document