scholarly journals The Gamma-ray Large Area Space Telescope (GLAST)

2002 ◽  
Vol 187 ◽  
pp. 73-77
Author(s):  
Taro Kotani

AbstractGLAST, the next U.S. general gamma-ray astrophysics mission scheduled to be launched into low Earth orbit in April, 2006, for 5–10 years of operation, is described. A product of a NASA/DOE and international collaboration, the Large Area Telescope (LAT) is the primary instrument that covers the < 20 MeV to > 300 GeV band with an effective area > 8000 cm2. The angular resolution ranges from < 3.5° at 100 MeV to < 0.15° at 10 GeV. The GLAST Burst Monitor (GBM) consists of a group of NaI and BGO detectors to extend GLAST’s sensitivity to gamma-ray bursts to the < 10 keV to > 25 MeV band. GLAST’s localizations enables us to identify the X-ray, optical and radio counterparts of thousands of gamma-ray sources and to determine their nature.

2005 ◽  
Vol 14 (01) ◽  
pp. 97-105 ◽  
Author(s):  
REMO RUFFINI ◽  
CARLO LUCIANO BIANCO ◽  
SHE-SHENG XUE ◽  
PASCAL CHARDONNET ◽  
FEDERICO FRASCHETTI ◽  
...  

It is shown that the concept of a fireball with a definite filamentary structure naturally emerges from the analysis of the spectra of Gamma-Ray Bursts (GRBs). These results, made possible by the recently obtained analytic expressions of the equitemporal surfaces in the GRB afterglow, depend crucially on the single parameter ℛ describing the effective area of the fireball emitting the X-ray and gamma-ray radiation. The X-ray and gamma-ray components of the afterglow radiation are shown to have a thermal spectrum in the co-moving frame of the fireball and originate from a stable shock front described self-consistently by the Rankine–Hugoniot equations. Precise predictions are presented on a correlation between spectral changes and intensity variations in the prompt radiation verifiable, e.g., by the Swift and future missions. The highly variable optical and radio emission depends instead on the parameters of the surrounding medium. The GRB 991216 is used as a prototype for this model.


1990 ◽  
Vol 123 ◽  
pp. 41-48
Author(s):  
F. Makino

AbstractThe X-ray astronomy satellite Ginga carries three scientific instruments, the Large Area proportional Counters (LAC), All Sky X-ray Monitor (ASM) and Gamma-ray Burst Detector (GBD). The LAC is the main instrument with an effective area of 4000 cm2 giving it the highest sensitivity to hard X-rays so far achieved. Ginga observed about 250 targets up to the end of 1989.


2021 ◽  
Vol 366 (4) ◽  
Author(s):  
Zhi-Ying Liu ◽  
Fu-Wen Zhang ◽  
Si-Yuan Zhu

2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1799-1808 ◽  
Author(s):  
MARCO TAVANI

Gamma-ray astrophysics in the energy range between 30 MeV and 30 GeV is in desperate need of arcminute angular resolution and source monitoring capability. The AGILE Mission planned to be operational in 2004-2006 will be the only space mission entirely dedicated to gamma-ray astrophysics above 30 MeV. The main characteristics of AGILE are the simultaneous X-ray and gamma-ray imaging capability (reaching arcminute resolution) and excellent gamma-ray timing (10-100 microseconds). AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Geng ◽  
Y. F. Huang

The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs) challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.


Sign in / Sign up

Export Citation Format

Share Document